Abstract
We present the first intraspecific linkage map for Nasonia vitripennis based on molecular markers. The map consists of 36 new microsatellite markers, extracted from the Nasonia genome sequence, and spans 515 cM. The five inferred linkage groups correspond to the five chromosomes of Nasonia. Comparison of recombination frequencies of the marker intervals spread over the whole genome (N = 33 marker intervals) between the intraspecific N. vitripennis map and an interspecific N. vitripennis × N. giraulti map revealed a slightly higher (1.8%) recombination frequency in the intraspecific cross. We further considered an N. vitripennis × N. longicornis map with 29 microsatellite markers spanning 430 cM. Recombination frequencies in the two interspecific crosses differed neither between reciprocal crosses nor between mapping populations of embryos and adults. No major chromosomal rearrangements were found for the analyzed genomic segments. The observed differential F 2 hybrid male mortality has no significant effect on the genome-wide recombination frequency in Nasonia. We conclude that interspecific crosses between the different Nasonia species, a hallmark of Nasonia genetics, are generally suitable for mapping quantitative and qualitative trait loci for species differences.
Original language | English |
---|---|
Pages (from-to) | 302-309 |
Number of pages | 8 |
Journal | Heredity |
Volume | 104 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2010 |
Keywords
- Hybrids
- Insects
- Linkage map
- Microsatellites
- Recombination
- Speciation