A Network Intrusion Detection Method Based on Stacked Autoencoder and LSTM

Yu Yan, Lin Qi, Jie Wang, Yun Lin, Lei Chen

Research output: Contribution to book or proceedingConference articlepeer-review

42 Scopus citations

Abstract

Nowadays, network intrusions have brought greater impact in a large scale. Intrusion Detection Systems (IDS) have been a recent research hotspot for both the industry and the academic. However, due to the dynamic characteristics of network traffic, it is challenging to extract significant features and identify the traffic types. This paper focuses on applying deep learning methods to feature extraction. Specifically, an IDS model is proposed based on autoencoder and long short-term memory (LSTM) cell. The overall architecture of the intrusion detection model includes a feature extractor, a classifier, and an evaluation block. Different structures of the feature extraction model have been discussed and researched. Experiments conducted on the UNSW-NB15 dataset produce satisfactory result. A number of selected metrics such as accuracy and false alarm rate are adopted to evaluate the detection performance. Simulation results indicate that our model works better than competing machine learning methods and achieves accuracy of over 92%.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Communications, ICC 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728150895
DOIs
StatePublished - Jun 2020
Event2020 IEEE International Conference on Communications, ICC 2020 - Dublin, Ireland
Duration: Jun 7 2020Jun 11 2020

Publication series

NameIEEE International Conference on Communications
Volume2020-June
ISSN (Print)1550-3607

Conference

Conference2020 IEEE International Conference on Communications, ICC 2020
Country/TerritoryIreland
CityDublin
Period06/7/2006/11/20

Keywords

  • Autoencoder
  • Feature Reduction
  • Intrusion Detection
  • LSTM

Fingerprint

Dive into the research topics of 'A Network Intrusion Detection Method Based on Stacked Autoencoder and LSTM'. Together they form a unique fingerprint.

Cite this