Abstract
<div class="line" id="line-19"> We show that there is an Avramov–Martsinkovsky type exact sequence with <img src="http://www.tandfonline.com/na101/home/literatum/publisher/tandf/journals/content/lagb20/2007/lagb20.v035.i05/00927870601169275/production/images/lagb_a_216852_o_ilm0001.gif"/> , Gtor, and Tor. We prove that if R is a Gorenstein ring, then the modules <img src="http://www.tandfonline.com/na101/home/literatum/publisher/tandf/journals/content/lagb20/2007/lagb20.v035.i05/00927870601169275/production/images/lagb_a_216852_o_ilm0002.gif"/> , n ≥ 1 can be computed using either a complete resolution of MR or using a complete resolution of RN. We show that over a Gorenstein ring a left R-module N is Gorenstein flat if and only if <img src="http://www.tandfonline.com/na101/home/literatum/publisher/tandf/journals/content/lagb20/2007/lagb20.v035.i05/00927870601169275/production/images/lagb_a_216852_o_ilm0003.gif"/> . We also show that over commutative Gorenstein rings the modules <img src="http://www.tandfonline.com/na101/home/literatum/publisher/tandf/journals/content/lagb20/2007/lagb20.v035.i05/00927870601169275/production/images/lagb_a_216852_o_ilm0004.gif"/> can be computed by the combined use of a flat resolution and a Gorenstein flat resolution of M.</div>
Original language | American English |
---|---|
Journal | Communications in Algebra |
Volume | 35 |
DOIs | |
State | Published - May 7 2007 |
Keywords
- Complete resolution
- Gorenstein flat resolution
- Gorenstein projective resolution
DC Disciplines
- Mathematics