Absolute, Gorenstein, and Tate Torsion Modules

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

<div class="line" id="line-19"> We show that there is an Avramov&ndash;Martsinkovsky type exact sequence with <img src="http://www.tandfonline.com/na101/home/literatum/publisher/tandf/journals/content/lagb20/2007/lagb20.v035.i05/00927870601169275/production/images/lagb_a_216852_o_ilm0001.gif"/> , Gtor, and Tor. We prove that if R is a Gorenstein ring, then the modules <img src="http://www.tandfonline.com/na101/home/literatum/publisher/tandf/journals/content/lagb20/2007/lagb20.v035.i05/00927870601169275/production/images/lagb_a_216852_o_ilm0002.gif"/> , n&nbsp;&ge;&nbsp;1 can be computed using either a complete resolution of MR or using a complete resolution of RN. We show that over a Gorenstein ring a left R-module N is Gorenstein flat if and only if <img src="http://www.tandfonline.com/na101/home/literatum/publisher/tandf/journals/content/lagb20/2007/lagb20.v035.i05/00927870601169275/production/images/lagb_a_216852_o_ilm0003.gif"/> . We also show that over commutative Gorenstein rings the modules <img src="http://www.tandfonline.com/na101/home/literatum/publisher/tandf/journals/content/lagb20/2007/lagb20.v035.i05/00927870601169275/production/images/lagb_a_216852_o_ilm0004.gif"/> can be computed by the combined use of a flat resolution and a Gorenstein flat resolution of M.</div>
Original languageAmerican English
JournalCommunications in Algebra
Volume35
DOIs
StatePublished - May 7 2007

Keywords

  • Complete resolution
  • Gorenstein flat resolution
  • Gorenstein projective resolution

DC Disciplines

  • Mathematics

Fingerprint

Dive into the research topics of 'Absolute, Gorenstein, and Tate Torsion Modules'. Together they form a unique fingerprint.

Cite this