TY - JOUR
T1 - Achieving Lightweight Privacy-Preserving Image Sharing and Illegal Distributor Detection in Social IoT
AU - Deng, Tianpeng
AU - Li, Xuan
AU - Jin, Biao
AU - Chen, Lei
AU - Lin, Jie
N1 - Publisher Copyright:
© 2021 Tianpeng Deng et al.
PY - 2021
Y1 - 2021
N2 - The applications of social Internet of Things (SIoT) with large numbers of intelligent devices provide a novel way for social behaviors. Intelligent devices share images according to the groups of their specified owners. However, sharing images may cause privacy disclosure when the images are illegally distributed without owners' permission. To tackle this issue, combining blind watermark with additive secret sharing technique, we propose a lightweight and privacy-preserving image sharing (LPIS) scheme with illegal distributor detection in SIoT. Specifically, the query user's authentication information is embedded in two shares of the transformed encrypted image by using discrete cosine transform (DCT) and additive secret sharing technique. The robustness against attacks, such as JPEG attack and the least significant bit planes (LSBs) replacement attacks, are improved by modifying 1/8 of coefficients of the transformed image. Moreover, we adopt two edge servers to provide image storage and authentication information embedding services for reducing the operational burden of clients. As a result, the identity of the illegal distributor can be confirmed by the watermark extraction of the suspicious image. Finally, we conduct security analysis and ample experiments. The results show that LPIS is secure and robust to prevent illegal distributors from modifying images and manipulating the embedded information before unlawful sharing.
AB - The applications of social Internet of Things (SIoT) with large numbers of intelligent devices provide a novel way for social behaviors. Intelligent devices share images according to the groups of their specified owners. However, sharing images may cause privacy disclosure when the images are illegally distributed without owners' permission. To tackle this issue, combining blind watermark with additive secret sharing technique, we propose a lightweight and privacy-preserving image sharing (LPIS) scheme with illegal distributor detection in SIoT. Specifically, the query user's authentication information is embedded in two shares of the transformed encrypted image by using discrete cosine transform (DCT) and additive secret sharing technique. The robustness against attacks, such as JPEG attack and the least significant bit planes (LSBs) replacement attacks, are improved by modifying 1/8 of coefficients of the transformed image. Moreover, we adopt two edge servers to provide image storage and authentication information embedding services for reducing the operational burden of clients. As a result, the identity of the illegal distributor can be confirmed by the watermark extraction of the suspicious image. Finally, we conduct security analysis and ample experiments. The results show that LPIS is secure and robust to prevent illegal distributors from modifying images and manipulating the embedded information before unlawful sharing.
UR - http://www.scopus.com/inward/record.url?scp=85108945631&partnerID=8YFLogxK
U2 - 10.1155/2021/5519558
DO - 10.1155/2021/5519558
M3 - Article
AN - SCOPUS:85108945631
SN - 1939-0114
VL - 2021
JO - Security and Communication Networks
JF - Security and Communication Networks
M1 - 5519558
ER -