Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications

David C. Weindorf, Noura Bakr, Yuanda Zhu

Research output: Contribution to book or proceedingChapterpeer-review

252 Scopus citations

Abstract

Contemporary soil, agronomic, and environmental investigations require high quality data for the development of sound management decisions. For years, X-ray fluorescence (XRF) spectrometry has been known to provide accurate elemental data in a wide range of matrices. However, advances in the past two decades have now made the technology portable. Improvements to spectrometer design have led to the replacement of many active source X-ray units with X-ray tubes that only emit X-rays when energized. Several generations of detector improvement have resulted in the current standard for many units, the silicon drift detector, which is capable of much lower limits of detection than its predecessors. Field portable X-ray fluorescence (PXRF) spectrometers offer many advantages over traditional techniques including speed, portability, wide dynamic range of elemental quantification, little/no need for sample pretreatment, and simplicity. Furthermore, PXRF analyses are nondestructive, allowing for analyzed samples to be preserved for future use. This review presents an overview of the development, operational theory, and contemporary uses of PXRF. Also, benefits and limitations to PXRF use are presented. Many industrial uses are covered, but deference is paid to rapidly advancing environmental, pedological, and agronomic applications of PXRF. Summarily, PXRF offers a range of benefits not possible with traditional laboratory techniques.

Original languageEnglish
Title of host publicationAdvances in Agronomy
PublisherAcademic Press Inc.
Pages1-45
Number of pages45
DOIs
StatePublished - 2014

Publication series

NameAdvances in Agronomy
Volume128
ISSN (Print)0065-2113

Scopus Subject Areas

  • Agronomy and Crop Science
  • Soil Science

Keywords

  • Agronomy
  • Elemental quantification
  • Environmental quality analysis
  • Heavy metals
  • Methods of soil analysis
  • Pedology
  • Portable X-ray fluorescence

Fingerprint

Dive into the research topics of 'Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications'. Together they form a unique fingerprint.

Cite this