@inproceedings{36a6796af0b84727b9580500141a9d71,
title = "Adverse Impacts of 5G Downlinks on Human Body",
abstract = "The increasing demand for higher data rates and uninterrupted reliable service have made the frequency spectrum above 6 GHz a very promising candidate for future wireless communications because of its massive amount of raw bandwidth and extremely high data transfer capabilities. However, increasing concerns of communications at high frequencies on human health have gained international alarm that suggests more research before it is deployed successfully. In this context, this paper aims to investigate the human electromagnetic field (EMF) exposure from fifth-generation (5G) downlink communications and compare its impacts with the present cellular technologies considering the features that the 5G systems will likely adopt. Our simulation results suggest that while the impacts from 5G beamforming communications cross the regulatory borders at downlinks for a very short range between base stations (BSs) and user equipment (UE), the exposure level remains on a high throughout the entire network compared to the present systems. Also, this paper urges for more research on the exposure level from future communications to determine any possible threats below the existing guidelines. This paper also highlights the significance of considering SAR for the measurement of exposure compliance in downlinks.",
keywords = "AP-UE distance, Downlink, Human EMF exposure, PD, SAR, mmW",
author = "Imtiaz Nasim and Seungmo Kim",
note = "Publisher Copyright: {\textcopyright} 2019 IEEE.; 2019 IEEE SoutheastCon, SoutheastCon 2019 ; Conference date: 11-04-2019 Through 14-04-2019",
year = "2019",
month = apr,
doi = "10.1109/SoutheastCon42311.2019.9020454",
language = "English",
series = "Conference Proceedings - IEEE SOUTHEASTCON",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2019 IEEE SoutheastCon, SoutheastCon 2019",
address = "United States",
}