Agreement between a smartphone pulse sensor application and electrocardiography for determining lnRMSSD

Michael R. Esco, Andrew A. Flatt, Fábio Y. Nakamura

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

The purpose of this study was to determine the agreement between a smartphone pulse finger sensor (SPFS) and electrocardiography (ECG) for determining ultra-short-term heart rate variability in 3 different positions. Thirty college-aged men (n = 15) and women (n = 15) volunteered to participate in this study. Sixty-second heart rate measures were simultaneously taken with the SPFS and ECG in supine, seated, and standing positions. The log transformed root mean square of successive R-R interval differences (lnRMSSD) was calculated from the SPFS and ECG. The lnRMSSD values were 81.5 ± 11.7 using ECG and 81.6 ± 11.3 using SPFS (p = 0.63, Cohen's d = 0.01) in the supine position, 76.5 ± 8.2 using ECG and 77.5 ± 8.2 using SPFS (p = 0.007, Cohen's d = 0.11) in the seated position, and 66.5 ± 9.2 using ECG and 67.8 ± 9.1 using SPFS (p < 0.001, Cohen's d = 0.15) in the standing position. The SPFS showed a possibly strong correlation to the ECG in all 3 positions (r values from 0.98 to 0.99). In addition, the limits of agreement (constant error ± 1.98 SD) were -0.13 ± 2.83 for the supine values, -0.94 ± 3.47 for the seated values, and -1.37 ± 3.56 for the standing values. The results of the study suggest good agreement between the SPFS and ECG for measuring lnRMSSD in supine, seated, and standing positions. Although significant differences were noted between the 2 methods in the seated and standing positions, the effect sizes were trivial.

Original languageEnglish
Pages (from-to)380-385
Number of pages6
JournalJournal of Strength and Conditioning Research
Volume31
Issue number2
DOIs
StatePublished - Feb 1 2017

Keywords

  • athletic monitoring
  • heart rate variability
  • parasympathetic
  • sport technology

Fingerprint

Dive into the research topics of 'Agreement between a smartphone pulse sensor application and electrocardiography for determining lnRMSSD'. Together they form a unique fingerprint.

Cite this