TY - JOUR
T1 - An Application of a Shape Function Based Spatiotemporal Interpolation Method to Ozone and Population-Based Environmental Expsoure in the Contiguous U.S.
AU - Li, L.
AU - Zhang, X.
AU - Piltner, R.
PY - 2008/12/1
Y1 - 2008/12/1
N2 - It is important to conduct research on the connection between air pollution and human health using population-based spatiotemporal environmental exposure assessment on a large scale with respect to area and population. In our paper, using a set of spatiotemporal data with annual ozone concentration measurements in the contiguous U.S. during 1994 and 1999, we address the following challenging issues in conducting such research: spatiotemporal interpolation, comparison of spatiotemporal interpolation methods, visualization, and analysis of population exposure to ozone. A 3D shape function based spatiotemporal interpolation method has been used in this paper to estimate the ozone concentrations at any unmeasured location and time. Using the leave-one-out cross-validation, we compute error statistics to compare the shape function and IDW (Inverse Distance Weighting) methods. For the considered case studies it is observed that the shape function method is better than IDW in terms of MAPE (Mean Absolute Percentage Error) and algorithm complexity. For generating maps of annual ozone concentrations, we propose a new approach to select locations to interpolate and visualize: picking U.S. census block centroids as sample locations. The advantage of this approach is to generate more sample points in areas with more intensive human activities. In our experiment, there were about 8,000,000 sample points selected per year. Traditional GIS techniques are insufficient in handling such kind of spatiotemporal data. The visualization results of ozone concentration distribution at the census tract level in the contiguous U.S. from 1994 to 1999 are illustrated. We also analyze the population exposure to ozone in the year 1999 according to different ozone concentration levels following the recommendations given by the U.S. EPA on air quality. Our finding is that in the year of 1999, 9.8% total population in the contiguous U.S. has been exposed to a high risk ozone level, 78.7% to a moderate risk, and only 11.5% to a low risk.
AB - It is important to conduct research on the connection between air pollution and human health using population-based spatiotemporal environmental exposure assessment on a large scale with respect to area and population. In our paper, using a set of spatiotemporal data with annual ozone concentration measurements in the contiguous U.S. during 1994 and 1999, we address the following challenging issues in conducting such research: spatiotemporal interpolation, comparison of spatiotemporal interpolation methods, visualization, and analysis of population exposure to ozone. A 3D shape function based spatiotemporal interpolation method has been used in this paper to estimate the ozone concentrations at any unmeasured location and time. Using the leave-one-out cross-validation, we compute error statistics to compare the shape function and IDW (Inverse Distance Weighting) methods. For the considered case studies it is observed that the shape function method is better than IDW in terms of MAPE (Mean Absolute Percentage Error) and algorithm complexity. For generating maps of annual ozone concentrations, we propose a new approach to select locations to interpolate and visualize: picking U.S. census block centroids as sample locations. The advantage of this approach is to generate more sample points in areas with more intensive human activities. In our experiment, there were about 8,000,000 sample points selected per year. Traditional GIS techniques are insufficient in handling such kind of spatiotemporal data. The visualization results of ozone concentration distribution at the census tract level in the contiguous U.S. from 1994 to 1999 are illustrated. We also analyze the population exposure to ozone in the year 1999 according to different ozone concentration levels following the recommendations given by the U.S. EPA on air quality. Our finding is that in the year of 1999, 9.8% total population in the contiguous U.S. has been exposed to a high risk ozone level, 78.7% to a moderate risk, and only 11.5% to a low risk.
KW - Geographic information systems (GIS)
KW - Leave-one-out cross-validation
KW - Ozone
KW - Population exposure
KW - Shape functions
KW - Spatiotemporal interpolation
UR - https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/154
UR - https://doi.org/10.3808/jei.200800130
U2 - 10.3808/jei.200800130
DO - 10.3808/jei.200800130
M3 - Article
SN - 1726-2135
VL - 12
JO - Journal of Environmental Informatics
JF - Journal of Environmental Informatics
ER -