Abstract
In this paper we develop a semi-parametric approach to model nonlinear relationship in time series data. The usefulness of this approach is illustrated on a hourly electricity demand data set. Polynomial splines are used to model the effect of temperature on hourly electricity demand for different times of the day and types of the day. An ARIMA model is used to model the serial correlation in the data. An algorithm is developed to automatically select the models, and the models are estimated through backfitting. Forecasting performance is evaluated using post-sample forecasting and comparative results are presented.
Original language | American English |
---|---|
State | Published - Jul 31 2017 |
Event | Joint Statistical Meetings (JSM) - Duration: Jul 31 2017 → … |
Conference
Conference | Joint Statistical Meetings (JSM) |
---|---|
Period | 07/31/17 → … |
Keywords
- Automatic
- Computationally
- Efficient
- Electricity demand
- Forecasting
- Hourly
- Semi-parametric
- Time series model
DC Disciplines
- Business Administration, Management, and Operations
- Operations and Supply Chain Management