Coating-based quartz crystal microbalance detection methods of environmentally relevant volatile organic compounds

Rocío L. Pérez, Caitlan E. Ayala, Jong Yoon Park, Jin Woo Choi, Isiah M. Warner

Research output: Contribution to journalSystematic reviewpeer-review

22 Scopus citations

Abstract

Volatile organic compounds (VOCs) that evaporate under standard atmospheric conditions are of growing concern. This is because it is well established that VOCs represent major contamination risks since release of these compounds into the atmosphere can contribute to global warming, and thus, can also be detrimental to the overall health of worldwide populations including plants, animals, and humans. Consequently, the detection, discrimination, and quantification of VOCs have become highly relevant areas of research over the past few decades. One method that has been and continues to be creatively developed for analyses of VOCs is the Quartz Crystal Microbalance (QCM). In this review, we summarize and analyze applications of QCM devices for the development of sensor arrays aimed at the detection of environmentally relevant VOCs. Herein, we also summarize applications of a variety of coatings, e.g., polymers, macrocycles, and ionic liquids that have been used and reported in the literature for surface modification in order to enhance sensing and selective detection of VOCs using quartz crystal resonators (QCRs) and thus QCM. In this review, we also summarize novel electronic systems that have been developed for improved QCM measurements.

Original languageEnglish
Article number153
JournalChemosensors
Volume9
Issue number7
DOIs
StatePublished - Jul 2021
Externally publishedYes

Scopus Subject Areas

  • Analytical Chemistry
  • Physical and Theoretical Chemistry

Keywords

  • Coating materials
  • Electronic systems
  • Quartz crystal microbalance
  • Sensor arrays
  • Volatile organic compounds

Fingerprint

Dive into the research topics of 'Coating-based quartz crystal microbalance detection methods of environmentally relevant volatile organic compounds'. Together they form a unique fingerprint.

Cite this