Combustion and emissions characteristics of a polypropylene blended diesel fuel in a direct injection compression engine

Valentin Soloiu, Yoshinobu Yoshihara, Kazuie Nishiwaki, Yasufumi Nakanishi

Research output: Contribution to book or proceedingConference articlepeer-review

12 Scopus citations

Abstract

The authors investigated the formulation, combustion and emissions of polypropylene (PP) - diesel fuel mixtures in a direct injection diesel engine. The fuel has been obtained by an original technology they developed, in which the low or high density polypropylene (LDPP, HDPP), have been mixed in a nitrogen atmosphere at 200 °C, 10-40% by wt. in diesel fuel. The kinematic viscosity of the polypropylene-diesel fuels was investigated between 25-250 °C and the results showed that viscosity of the plastic mixtures is much higher than that of diesel alone, ranging from 10 cSt to 500 cSt, and depending on the plastic structure, content, and temperature. The TGA and DTA analysis has been conducted to investigate the oxidation and combustion properties of pure PP and polymerdiesel fuels. The results showed that at about 125 °C, the LDPP melts, but does not decompose up 240 °C, when the oxidation starts, and has a peak of heat release at 340-350 °C, and the process is completed at 400 °C. The engine's injection system used, was a piston-barrel type pump, capable of an injection pressure of 200 bars. The injector had 4 × 0.200 mm nozzles with a conical tip needle. The 25% PP-diesel mixture had a successful ignition in a direct injection 110 mm bore, omega combustion chamber engine. The ignition delay for polypropylene-diesel mixtures was longer by about 0.5 ms (at 1200 rpm), compared with diesel. The heat release showed a different development compared with the reference diesel fuel, the premixed phase being inhibited while a slow diffusion combustion phase fully developed. The maximum combustion pressure has been 83 bars for diesel and decreased by 2 bars for the blended fuel, while the bulk gas maximum temperature (calculated) reached about 2500 K for diesel vs 2600 K for polypropylene mixture. The heat flux calculated by the Annand model has shown lower values for diesel fuel with a maximum of about 2.7 MW/m2 compared with 3.0 MW/m2 for PP blended fuel with similar values for convection flux for both fuels at about 1.57 MW/m2 and a higher radiation flux of about 1.44 MW/m2 for PP fuel versus 1.27 MW/m2 for diesel. The heat lost during the cycle shows low values for the premixed combustion stage and increased values for the diffusion stage for both fuels. The exhaust temperatures have been practically identical for both fuels for all loads, with emissions of NOx, and CO reduced by 40% for the alternative fuel, while the CO2 exhibited almost the same values for both fuels. The smoke emissions decreased by 60-90% for the polypropylene blended fuel depending on the load, The engines' overall efficiency was slightly lower for PP fuel at low loads compared with diesel combustion but at 100% load both reached 36%. The study showed that the new formulation process proposed by the authors is able to produce a new class of fuels from diesel blended with low density polypropylene, and resulted in hybrid fuels with very promising combustion prospects. The engine investigation proved that 25% PP fuels can be injected and burnt in a diesel engine at a residence time of about 5 ms from the start of injection, and the engine's nominal power could be reached, with lower emissions than reference diesel fuel.

Original languageEnglish
Title of host publicationASME 2010 Internal Combustion Engine Division Fall Technical Conference, ICEF2010
Pages369-378
Number of pages10
DOIs
StatePublished - 2010
EventASME 2010 Internal Combustion Engine Division Fall Technical Conference, ICEF2010 - San Antonio, TX, United States
Duration: Sep 12 2010Sep 15 2010

Publication series

NameAmerican Society of Mechanical Engineers, Internal Combustion Engine Division (Publication) ICE
ISSN (Print)1066-5048

Conference

ConferenceASME 2010 Internal Combustion Engine Division Fall Technical Conference, ICEF2010
Country/TerritoryUnited States
CitySan Antonio, TX
Period09/12/1009/15/10

Fingerprint

Dive into the research topics of 'Combustion and emissions characteristics of a polypropylene blended diesel fuel in a direct injection compression engine'. Together they form a unique fingerprint.

Cite this