Combustion Characteristics of Low DCN Synthetic Aviation Fuel, IPK, in a High Compression Ignition Indirect Injection Research Engine

Valentin Soloiu, Amanda Weaver, Richard Smith, Aidan Rowell, John McAfee, James Willis

Research output: Contribution to journalConference articlepeer-review

2 Scopus citations

Abstract

The Coal-To-Liquid (CTL) synthetic aviation fuel, Iso-Paraffinic Kerosene (IPK), was studied for ignition delay, combustion delay, pressure trace, pressure rise rate, apparent heat release rate in an experimental single cylinder indirect injection (IDI) compression ignition engine and a constant volume combustion chamber (CVCC). Autoignition characteristics for neat IPK, neat Ultra-Low Sulfur Diesel (ULSD), and a blend of 50%IPK and 50% ULSD were determined in the CVCC and the effects of the autoignition quality of each fuel were determined also in an IDI engine. ULSD was found to have a Derived Cetane Number (DCN) of 47 for the batch used in this experimentation. IPK was found to have a DCN of 25.9 indicating that is has a lower affinity for autoignition, and the blend fell between the two at 37.5. Additionally, it was found that the ignition delay for IPK in the CVCC was 5.3 ms and ULSD was 3.56 ms. This increase in ignition delay allowed the accumulation of fuel in the combustion chamber when running with IPK that resulted in detonation of the premixed air and fuel found to cause high levels of Ringing Intensity (RI) when running neat IPK indicated by the 60% increase in Peak Pressure Rise Rate (PPRR) when compared to ULSD at the same load. An emissions analysis was conducted at 7 bar Indicated Mean Effective Pressure (IMEP) for ULSD and the blend of 50% ULSD and 50% IPK. With the addition of 50% IPK by mass, there was found to be a reduction in the NOx, CO2, with a slight increase in the CO in g/kWh.

Original languageEnglish
JournalSAE Technical Papers
DOIs
StatePublished - Apr 11 2023
EventSAE 2023 World Congress Experience, WCX 2023 - Detroit, United States
Duration: Apr 18 2023Apr 20 2023

Fingerprint

Dive into the research topics of 'Combustion Characteristics of Low DCN Synthetic Aviation Fuel, IPK, in a High Compression Ignition Indirect Injection Research Engine'. Together they form a unique fingerprint.

Cite this