Control of autonomous robots using the principles of neuromodulation

Akimul Prince, Biswanath Samanta

Research output: Contribution to book or proceedingConference articlepeer-review

1 Scopus citations

Abstract

The paper presents a control approach based on vertebrate neuromodulation and its implementation on an autonomous robot platform. A simple neural network is used to model the neuromodulatory function for generating context based behavioral responses to sensory signals. The neural network incorporates three types of neurons- cholinergic and noradrenergic (ACh/NE) neurons for attention focusing and action selection, dopaminergic (DA) neurons for curiosityseeking, and serotonergic (5-HT) neurons for risk aversion behavior. The implementation of the neuronal model on a relatively simple autonomous robot illustrates its interesting behavior adapting to changes in the environment. The integration of neuromodulation based robots in the study of human-robot interaction would be worth considering in future.

Original languageEnglish
Title of host publicationControl, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems;
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856130
DOIs
StatePublished - 2013
EventASME 2013 Dynamic Systems and Control Conference, DSCC 2013 - Palo Alto, CA, United States
Duration: Oct 21 2013Oct 23 2013

Publication series

NameASME 2013 Dynamic Systems and Control Conference, DSCC 2013
Volume2

Conference

ConferenceASME 2013 Dynamic Systems and Control Conference, DSCC 2013
Country/TerritoryUnited States
CityPalo Alto, CA
Period10/21/1310/23/13

Fingerprint

Dive into the research topics of 'Control of autonomous robots using the principles of neuromodulation'. Together they form a unique fingerprint.

Cite this