TY - JOUR
T1 - Counterfeit Product Detection: Bridging the Gap between Design Science and Behavioral Science in Information Systems Research
AU - Wimmer, Hayden
AU - Yoon, Victoria Y.
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - In IS research, there is a dichotomy where design science and behavioral science are distinct research paradigms. IS researchers should view these paradigms as complementary with research drawing upon the strengths of both, yet few have done so. This work demonstrates how design science and behavioral science can be united in IS research via counterfeit product detection based on product reviews in an online marketplace. Product authenticity in the online marketplace is a common issue plaguing consumers. The decision process involved in determining product authenticity is lengthy and complex. Despite the pressing need for an automatic authenticity rating system for online shopping, little research has been done to develop such a system and assess its effects on consumer purchase behavior. To respond to this need, our study develops a design artifact, called OnCDS, to automatically calculate the likelihood that a product is counterfeit based on online customer reviews. Drawing upon lexicon-based sentiment analysis approaches and TF-IDF as kernel theories for our design, we employ web scraping, natural language processing, and topic analysis methods to process customer reviews and calculate the counterfeit score of a product. In assessing the effects of OnCDS on consumer behavior, we develop a research model that encompasses trust and perceived risk based on the valence framework. Results show that our design artifact's efficacy is validated and that the counterfeit score affects perceived risk and trust, which in turn influences attitude toward purchase.
AB - In IS research, there is a dichotomy where design science and behavioral science are distinct research paradigms. IS researchers should view these paradigms as complementary with research drawing upon the strengths of both, yet few have done so. This work demonstrates how design science and behavioral science can be united in IS research via counterfeit product detection based on product reviews in an online marketplace. Product authenticity in the online marketplace is a common issue plaguing consumers. The decision process involved in determining product authenticity is lengthy and complex. Despite the pressing need for an automatic authenticity rating system for online shopping, little research has been done to develop such a system and assess its effects on consumer purchase behavior. To respond to this need, our study develops a design artifact, called OnCDS, to automatically calculate the likelihood that a product is counterfeit based on online customer reviews. Drawing upon lexicon-based sentiment analysis approaches and TF-IDF as kernel theories for our design, we employ web scraping, natural language processing, and topic analysis methods to process customer reviews and calculate the counterfeit score of a product. In assessing the effects of OnCDS on consumer behavior, we develop a research model that encompasses trust and perceived risk based on the valence framework. Results show that our design artifact's efficacy is validated and that the counterfeit score affects perceived risk and trust, which in turn influences attitude toward purchase.
KW - Behavioral science
KW - Bridging
KW - Cap
KW - Counterfeit product detection
KW - Design science
KW - Information systems research
UR - https://digitalcommons.georgiasouthern.edu/information-tech-facpubs/83
UR - https://doi.org/10.1016/j.dss.2017.09.005
U2 - 10.1016/j.dss.2017.09.005
DO - 10.1016/j.dss.2017.09.005
M3 - Article
SN - 0167-9236
VL - 104
JO - Decision Support Systems
JF - Decision Support Systems
ER -