TY - JOUR
T1 - Desiccation Resistance and Micro-Climate Adaptation
T2 - Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California
AU - Buellesbach, Jan
AU - Whyte, Brian A.
AU - Cash, Elizabeth
AU - Gibson, Joshua D.
AU - Scheckel, Kelsey J.
AU - Sandidge, Rebecca
AU - Tsutsui, Neil D.
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Cuticular hydrocarbons (CHCs), the dominant fraction of the insects’ epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant Linepithema humile, an unparalleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles. CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across the Argentine ant’s expanded range, yet this variation would largely conflict with the vastly extended nestmate recognition based on CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity postulated to maintain nestmate recognition. n-Alkanes and n-alkenes showed the largest adaptability to environmental conditions most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions were largely overriden when taking overall CHC variation across the expanded range of L. humile into account, resulting in conserved colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile.
AB - Cuticular hydrocarbons (CHCs), the dominant fraction of the insects’ epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant Linepithema humile, an unparalleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles. CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across the Argentine ant’s expanded range, yet this variation would largely conflict with the vastly extended nestmate recognition based on CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity postulated to maintain nestmate recognition. n-Alkanes and n-alkenes showed the largest adaptability to environmental conditions most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions were largely overriden when taking overall CHC variation across the expanded range of L. humile into account, resulting in conserved colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile.
KW - Chemical communication
KW - Gas chromatography
KW - Invasive species
KW - Linepithema humile
KW - Mass spectrometry
KW - Methyl-branched alkanes
KW - Nestmate recognition
KW - Water-proofing
KW - n-alkanes
KW - n-alkenes
UR - http://www.scopus.com/inward/record.url?scp=85056577564&partnerID=8YFLogxK
U2 - 10.1007/s10886-018-1029-y
DO - 10.1007/s10886-018-1029-y
M3 - Article
C2 - 30430363
AN - SCOPUS:85056577564
SN - 0098-0331
VL - 44
SP - 1101
EP - 1114
JO - Journal of Chemical Ecology
JF - Journal of Chemical Ecology
IS - 12
ER -