Design and optimization of PARTNER: A parallel actuated robotic trainer for NEuroRehabilitation

Hossein Taheri, Stephen A. Goodwin, James A. Tigue, Joel C. Perry, Eric T. Wolbrecht

Research output: Contribution to book or proceedingConference articlepeer-review

2 Scopus citations

Abstract

Robotic devices are a promising and dynamic tool in the realm of post-stroke rehabilitation. Researchers are still investigating how the use of robots affects motor learning and what design characteristics best encourage recovery. We present a parallel-actuated, end-effector robot designed to provide spatial assistance for upper-limb therapy while exhibiting low impedance and high backdrivability. A gradient based optimization was performed to find an optimal design that accounted for force isotropy, mechanical advantage, workspace size, and counter-balancing. A beta prototype has been built to these specifications (low impedance and high backdrivability) and has undergone initial controller performance as well as fit and function testing. By fitting a nonlinear model to experimental frequency response data, the apparent mass, viscous friction coefficient, and dynamic dry friction coefficient were determined to be 0.242 kg, 0.114 Ns/m, and 0.894 N respectively. The robot will serve as a testing platform to investigate motor learning and evaluate the efficacy of control schemes for post-stroke movement therapy.

Original languageEnglish
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2128-2132
Number of pages5
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Conference

Conference38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period08/16/1608/20/16

Fingerprint

Dive into the research topics of 'Design and optimization of PARTNER: A parallel actuated robotic trainer for NEuroRehabilitation'. Together they form a unique fingerprint.

Cite this