TY - GEN
T1 - Development of a mechatronics course integrated with lab
AU - Samanta, Biswanath
N1 - Publisher Copyright:
Copyright ©2017 ASME.
PY - 2017
Y1 - 2017
N2 - This paper reports the development of an introductory mechatronics course in Mechanical Engineering (ME) undergraduate program at Georgia Southern University. This an updated version of an existing required course in the ABET accredited BSME program. The course covers three broad areas: mechatronic instrumentation, computer based data acquisition and analysis, and microcontroller programming and interfacing. This is a required 3-credit course in the ME program with updated computing application specific content reinforcing theoretical foundation with hands-on learning activities of the existing course. The course has four contact hours per week with two hours of lecture and two hours of interactive session of problem solving and laboratory experiment. For each topic covered, students get the theoretical background and the hands-on experience in the laboratory setting. Both formative and summative assessment of the students' performance in the course are planned. Both direct and indirect forms of assessment are considered. The paper reports the details of the course materials.
AB - This paper reports the development of an introductory mechatronics course in Mechanical Engineering (ME) undergraduate program at Georgia Southern University. This an updated version of an existing required course in the ABET accredited BSME program. The course covers three broad areas: mechatronic instrumentation, computer based data acquisition and analysis, and microcontroller programming and interfacing. This is a required 3-credit course in the ME program with updated computing application specific content reinforcing theoretical foundation with hands-on learning activities of the existing course. The course has four contact hours per week with two hours of lecture and two hours of interactive session of problem solving and laboratory experiment. For each topic covered, students get the theoretical background and the hands-on experience in the laboratory setting. Both formative and summative assessment of the students' performance in the course are planned. Both direct and indirect forms of assessment are considered. The paper reports the details of the course materials.
UR - http://www.scopus.com/inward/record.url?scp=85036616459&partnerID=8YFLogxK
U2 - 10.1115/DSCC2017-5265
DO - 10.1115/DSCC2017-5265
M3 - Conference article
AN - SCOPUS:85036616459
T3 - ASME 2017 Dynamic Systems and Control Conference, DSCC 2017
BT - Vibration in Mechanical Systems; Modeling and Validation; Dynamic Systems and Control Education; Vibrations and Control of Systems; Modeling and Estimation for Vehicle Safety and Integrity; Modeling and Control of IC Engines and Aftertreatment Systems;Unmanned Aerial Vehicles (UAVs) and Their Applications; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Control of Smart Buildings and Microgrids; Energy Systems
PB - American Society of Mechanical Engineers
T2 - ASME 2017 Dynamic Systems and Control Conference, DSCC 2017
Y2 - 11 October 2017 through 13 October 2017
ER -