Abstract
We have successfully synthesized Eu3+-doped TbPO4 nanowires, which are orderly organized to form bundle-like structure. A thermal treatment up to 600 °C does not modify the size, shape and structure of as-synthesized sample. Due to the energy overlap between Tb3+ and Eu3+, an efficient energy transfer occurs from Tb3+ to Eu3+. The effects of Eu3+ concentration and thermal treatment on the luminescent properties of Eu3+ are investigated. The increase of Eu3+ concentration leads to the increase of the energy transfer efficiency from Tb3+ to Eu3+, but also enhances the probability of the interaction between neighboring Eu3+, which results in the concentration quenching. With the heat-treatment, the luminescence of Eu3+ presents an obvious increase, but almost no change for the luminescence of Tb3+. This difference is explained based on the TGA, DTA, and fluorescent decay dynamics analyses.
Original language | English |
---|---|
Pages (from-to) | 467-473 |
Number of pages | 7 |
Journal | Journal of Solid State Chemistry |
Volume | 180 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2007 |
Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Physical and Theoretical Chemistry
- Inorganic Chemistry
- Materials Chemistry
Keywords
- Energy transfer
- Hydrothermal synthesis
- Luminescence
- Rare earth
- Thermal effect