Abstract
Let p(n) denote the number of partitions of the integer n. Recall Euler’s recurrence p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7) - p(n-12) - p(n-15) + . . . = 0 for all nonzero n. We present some additional Euler-type recurrences for p(n) and other combinatorial functions. Joint work with Yuriy Choliy, Rutgers University.
Original language | American English |
---|---|
State | Published - Oct 8 2016 |
Event | Integers Conference - Duration: Oct 8 2016 → … |
Conference
Conference | Integers Conference |
---|---|
Period | 10/8/16 → … |
Keywords
- Euler-Type
- Partition Recurrences
DC Disciplines
- Mathematics
- Physical Sciences and Mathematics