TY - CHAP
T1 - Examining the Impact of Computational Creativity Exercises on College Computer Science Students' Learning, Achievement, Self-Efficacy, and Creativity
AU - Peteranetz, Markeya S.
AU - Wang, Shiyuan
AU - Shell, Duane F.
AU - Flanigan, Abraham E.
AU - Soh, Leen Kiat
N1 - The purpose of the present study was to investigate how the inclusion of computational creativity exercises (CCEs) merging computational and creative thinking in undergraduate computer science (CS) courses affected students' course grades, learning of core CS knowledge, self-efficacy, and creative competency. CCEs were done in lower- and upper-division CS courses at a single university.
PY - 2018/2/21
Y1 - 2018/2/21
N2 - The purpose of the present study was to investigate how the inclusion of computational creativity exercises (CCEs) merging computational and creative thinking in undergraduate computer science (CS) courses affected students' course grades, learning of core CS knowledge, self-efficacy, and creative competency. CCEs were done in lower- and upper-division CS courses at a single university. Students in CCE implementation courses were compared to students in the same courses in different semesters. Propensity score matching was used to create comparable groups (control and implementation) based on students' GPA, motivation, and engagement. Results showed that implementing CCEs in undergraduate CS courses enhanced grades, learning of core CS knowledge, and self-efficacy for creatively applying CS knowledge. However, CCEs did not impact creative competency. The effect of the CCEs was consistent across upper- and lower-division courses for all outcomes. Unlike previous studies that only established the support for CCEs, such as positive dosage effects, the results of this study indicate that CCEs have a causal effect on students' achievement, learning, and self-efficacy, and this effect is independent of general academic achievement, motivation, and engagement. These findings establish the CCEs as a validated, evidence-based instructional method.
AB - The purpose of the present study was to investigate how the inclusion of computational creativity exercises (CCEs) merging computational and creative thinking in undergraduate computer science (CS) courses affected students' course grades, learning of core CS knowledge, self-efficacy, and creative competency. CCEs were done in lower- and upper-division CS courses at a single university. Students in CCE implementation courses were compared to students in the same courses in different semesters. Propensity score matching was used to create comparable groups (control and implementation) based on students' GPA, motivation, and engagement. Results showed that implementing CCEs in undergraduate CS courses enhanced grades, learning of core CS knowledge, and self-efficacy for creatively applying CS knowledge. However, CCEs did not impact creative competency. The effect of the CCEs was consistent across upper- and lower-division courses for all outcomes. Unlike previous studies that only established the support for CCEs, such as positive dosage effects, the results of this study indicate that CCEs have a causal effect on students' achievement, learning, and self-efficacy, and this effect is independent of general academic achievement, motivation, and engagement. These findings establish the CCEs as a validated, evidence-based instructional method.
KW - Computational creativity
KW - computational thinking
KW - computer science education
UR - https://dl.acm.org/doi/10.1145/3159450.3159459
U2 - 10.1145/3159450.3159459
DO - 10.1145/3159450.3159459
M3 - Chapter
BT - SIGCSE '18: Proceedings of the 49th ACM Technical Symposium on Computer Science Education
ER -