TY - JOUR
T1 - Experimental Observation of Phased Array Guided Wave Application in Composite Materials
AU - Taheri, Hossein
AU - Du, Jikai
AU - Delfanian, Fereidoon
N1 - Bingham, Jill, and Mark Hinders, "Lamb Wave Characterization of Corro-sion-Thinning in Aircraft Stringers: Experiment and Three-Dimensional Simulation," The Journal of the Acoustical Society of America, Vol. 126, No. 1, 2009, pp. 103-113. Calder, C.A., E.C. Draney, and W.W. Wilcox, "Noncontact Measurement of the Elastic Constants of Plutonium at Elevated Temperatures," Journal of Nuclear Materials, Vol.
PY - 2017/10/1
Y1 - 2017/10/1
N2 - Guided waves have been used extensively for discontinuity detection and materials evaluation in different applications. To reach a high probability of detection in nondestructive evaluation applica-tions, the optimal mode and frequency need to be used. The application of phased array ultrasonic testing for guided wave generation provides the advantages of multielement and time control firing of the elements. However, the optimal setup parameters have become more sophisticated. This study investigates guided wave generation and its application on carbon fiber reinforced polymer (CFRP) materials. The phased array ultrasonic technique (PAUT) was used as a promising nonde-structive technique for the inspection and evalua-tion of CFRP plates. Guided waves were generated using a PAUT commercial unit, probes, and wedges to investigate the possible applications of inspec-tion in industries. The wave generation factors, accuracy, and sensitivity of the technique are studied through the evaluation of wave parameters and signal characteristics. Results show that the guided wave modes can be generated using commercially available phased array ultrasonic systems through setting up the phased arrayparameters, including focusing the dynamic and static angles of the wave incident beams.
AB - Guided waves have been used extensively for discontinuity detection and materials evaluation in different applications. To reach a high probability of detection in nondestructive evaluation applica-tions, the optimal mode and frequency need to be used. The application of phased array ultrasonic testing for guided wave generation provides the advantages of multielement and time control firing of the elements. However, the optimal setup parameters have become more sophisticated. This study investigates guided wave generation and its application on carbon fiber reinforced polymer (CFRP) materials. The phased array ultrasonic technique (PAUT) was used as a promising nonde-structive technique for the inspection and evalua-tion of CFRP plates. Guided waves were generated using a PAUT commercial unit, probes, and wedges to investigate the possible applications of inspec-tion in industries. The wave generation factors, accuracy, and sensitivity of the technique are studied through the evaluation of wave parameters and signal characteristics. Results show that the guided wave modes can be generated using commercially available phased array ultrasonic systems through setting up the phased arrayparameters, including focusing the dynamic and static angles of the wave incident beams.
KW - Composite materials
KW - Experimental observation
KW - Guided wave application
KW - Phased array
UR - https://ndtlibrary.asnt.org/2017/ExperimentalObservationofPhasedArrayGuidedWaveApplicationinCompositeMaterials
M3 - Article
SN - 0025-5327
VL - 75
JO - Materials Evaluation
JF - Materials Evaluation
ER -