Experimental study of cohesive sediment consolidation and resuspension identifies approaches for coastal restoration: Lake Lery, Louisiana

Edward L. Lo, Samuel J. Bentley, Kehui Xu

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The purpose of this study was to evaluate related processes of sediment consolidation and resuspension in a coastal basin and how these processes influence retention of fine sediment delivered by a river diversion. Sediment samples were collected from Lake Lery, a coastal receiving basin of the Caernarvon Diversion from the Mississippi River, Louisiana. Consolidation was tested for six initial sediment concentrations (14.0–105 kg m–3) in a settling column over 15-day periods. Mud erodibility was tested at seven shear stress regimes (0.01–0.60 Pa) using a dual-core Gust erosion microcosm system, on cores containing suspensions that consolidated for 1, 2, and 4 weeks. Consolidation rates were found to be inversely and exponentially related to initial suspension concentration, over concentrations ranging from fluid mud (10–200 kg m–3) to hydraulic dredge effluent. Consolidation is best predicted by a function consisting of two exponential terms and one asymptotic constant, describing rates of rapid initial and slower subsequent settling. Coupled resuspension and consolidation tests (concentrations of 20–21 kg m–3) show that shear stresses generating the highest turbidity peaks increase from ≤0.30 Pa after 2 weeks of consolidation to ≥0.45 Pa after 4 weeks, and this strengthening cannot be attributed solely to increasing sediment concentration over time. Comparison of measured erosion shear stresses with bed shear stresses typical of coastal lakes and bays suggests that this degree of strengthening, if given time to occur, could increase the overall retention of fine sediments deposited on lake and bay floors.

Original languageEnglish
Pages (from-to)499-509
Number of pages11
JournalGeo-Marine Letters
Volume34
Issue number6
DOIs
StatePublished - Dec 2014
Externally publishedYes

Scopus Subject Areas

  • Oceanography
  • Environmental Science (miscellaneous)
  • Geotechnical Engineering and Engineering Geology
  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Experimental study of cohesive sediment consolidation and resuspension identifies approaches for coastal restoration: Lake Lery, Louisiana'. Together they form a unique fingerprint.

Cite this