Exploring the effects of various polymeric backbones on the performance of a hydroxyaromatic 1,2,3-triazole anion sensor

Aikohi Ugboya, Khristal Monroe, Unodinma Ofulue, Kayley Yates, Debanjana Ghosh, Shainaz M. Landge, Rafael Lopes Quirino, Karelle S. Aiken

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Polymeric chemosensors are vital sensing tools because of higher sensitivity compared to their monomeric counterparts and tunable mechanical properties. This study focuses on the incorporation of a hydroxyaromatic 1,2,3-triazole sensor, 2-(4-phenyl 1H-1,2,3-triazol-1-yl)phenol (PTP), into polymers. By itself, the triazole has a selective, fluorometric response to the fluoride, acetate, and dihydrogen phosphate anions, and is most responsive to fluoride. Current investigations probe the suitability of various polymeric backbones for the retention and enhancement of the triazole’s sensing capabilities. Backbones derived from acrylic acid, methyl methacrylate, divinylbenzene, and styrene were explored. UV-illumination, Nuclear Magnetic Resonance (NMR) titration, and ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy studies are used to investigate the performance of newly synthesized polymers and the derivatives of PTP that serve as the polymers’ precursors. Among the polymers investigated, copolymers with styrene proved best; these systems retained the sensing capabilities and were amenable to tuning for sensitivity.

Original languageEnglish
Article number2973
JournalSensors
Volume20
Issue number10
DOIs
StatePublished - May 2 2020

Keywords

  • 1,2,3-triazole
  • Anion detection
  • Polymeric chemosensor

Fingerprint

Dive into the research topics of 'Exploring the effects of various polymeric backbones on the performance of a hydroxyaromatic 1,2,3-triazole anion sensor'. Together they form a unique fingerprint.

Cite this