@inproceedings{3eb1ec53af5c40d1b42abb11eb0bf0e6,
title = "Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials",
abstract = "Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.",
author = "H. Taheri and L. Koester and T. Bigelow and Bond, {L. J.}",
note = "Publisher Copyright: {\textcopyright} 2018 Author(s).; 44th Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2017 ; Conference date: 16-07-2017 Through 21-07-2017",
year = "2018",
month = apr,
day = "20",
doi = "10.1063/1.5031508",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Chimenti, {Dale E.} and Bond, {Leonard J.}",
booktitle = "44th Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 37",
address = "United States",
}