Abstract
Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.
Original language | American English |
---|---|
Title of host publication | AIP Conference Proceeding |
DOIs | |
State | Published - Apr 20 2018 |
Keywords
- Additively manufactured materials
- Defects
- Experimental verification
- Finite element simulation
- Non-destructive inspection
- Ultrasonic
DC Disciplines
- Mechanical Engineering
- Manufacturing
- Engineering