Abstract
The triboemission of charged particles during sliding contact is one measurable but often neglected output during wear of ceramics. Previous research work by the authors suggested that some boundary-lubricant reactions may be initiated and controlled by triboemitted electrons, but the origin and mechanisms of the triboemission phenomena remain largely unknown. The authors used a new tribometer, whose features and capabilities were previously reported, to measure electron triboemission outputs from the sliding contacts of diamond-on-ceramics and other material systems under vacuum. Characterizations were previously presented in the time-domain for those outputs. This paper introduces a new characterization of electron triboemission from ceramics by considering the frequency of occurrence of the emission events. A literature review is included on statistical models for the triboemission phenomena. A transformation to frequency-domain reveals patterns of decaying frequencies of occurrence for increasing number of events in the triboemission outputs from diamond-on-alumina and diamond-on-sapphire contacts. The patterns are complex and several classic frequency distributions are tested for describing it. A new distribution, which was developed by the authors as a "truncated compound Poisson", shows the best fit to the triboemission data. Finally, the possibility is discussed of using frequency-domain analysis to obtain new understanding of possible mechanisms for charged-particle triboemission.
Original language | American English |
---|---|
Journal | Wear |
Volume | 255 |
DOIs | |
State | Published - Jan 1 2003 |
Keywords
- Ceramic wear
- Ceramics
- Charged-particle
- Exoemission
- Frequency analysis
- Generalized poison distribution
- Modeling
- Triboemission
DC Disciplines
- Mechanical Engineering