TY - JOUR
T1 - Fully controllable Kondo system
T2 - Coupling a flux qubit and an ultracold Fermi gas
AU - Patton, Kelly R.
N1 - Publisher Copyright:
© 2016 American Physical Society.
PY - 2016/2/26
Y1 - 2016/2/26
N2 - We show that a composite spin- Kondo system can be formed by coupling a superconducting quantum interference device (SQUID) to the internal hyperfine states of a trapped ultracold atomic Fermi gas. Here, the SQUID, or flux qubit, acts as an effective magnetic impurity that induces spin-flip scattering near the Fermi energies of the trapped gas. Although the ultracold gas and SQUID are at vastly different temperatures, the formation of a strongly correlated Kondo state between the two systems is found when the gas is cooled below the Kondo temperature. We find that the Kondo temperature of this hybrid system is within current experimental limits. Furthermore, the momentum distribution of the trapped fermions is calculated, which clearly shows an experimental signature of the Kondo screening length. In addition to probing Kondo physics, the controllability of this system can be used to systematically explore the relaxation and equilibration of a strongly correlated system that has been initially prepared in a selected nonequilibrium state.
AB - We show that a composite spin- Kondo system can be formed by coupling a superconducting quantum interference device (SQUID) to the internal hyperfine states of a trapped ultracold atomic Fermi gas. Here, the SQUID, or flux qubit, acts as an effective magnetic impurity that induces spin-flip scattering near the Fermi energies of the trapped gas. Although the ultracold gas and SQUID are at vastly different temperatures, the formation of a strongly correlated Kondo state between the two systems is found when the gas is cooled below the Kondo temperature. We find that the Kondo temperature of this hybrid system is within current experimental limits. Furthermore, the momentum distribution of the trapped fermions is calculated, which clearly shows an experimental signature of the Kondo screening length. In addition to probing Kondo physics, the controllability of this system can be used to systematically explore the relaxation and equilibration of a strongly correlated system that has been initially prepared in a selected nonequilibrium state.
UR - http://www.scopus.com/inward/record.url?scp=84960131863&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.93.023643
DO - 10.1103/PhysRevA.93.023643
M3 - Article
AN - SCOPUS:84960131863
SN - 2469-9926
VL - 93
JO - Physical Review A
JF - Physical Review A
IS - 2
M1 - 023643
ER -