TY - JOUR
T1 - Genotype characterization of the bacterium expressing the male-killing trait in the ladybird beetle Adalia bipunctata with specific rickettsial molecular tools
AU - Balayeva, N. M.
AU - Eremeeva, M. E.
AU - Tissot-Dupont, H.
AU - Zakharov, I. A.
AU - Raoult, D.
PY - 1995
Y1 - 1995
N2 - The male-killing ladybird beetle (LB) bacterium (AB bacterium) was analyzed with specific rickettsial molecular biology tools in the LB Adalia bipunctata strains. Eight phenotype-positive LB strains showing mortality of male embryos were amplified with rickettsial genus-specific primers from the gene for citrate synthase (CS) and the gene for a 17-kDa protein and spotted fever group-specific primers from the gene for the 120-kDa outer membrane protein (ompB). The specificity of amplification was confirmed by Southern hybridization and the absence of the above-listed gene products in three phenotype-negative LB strains. Restriction polymorphism patterns of three examined amplicons from the CS gene, 17-kDa-protein gene, and ompB gene were identical among the eight phenotype-positive LB strains and were unique among all known rickettsiae of the spotted fever and typhus groups. Amplified fragments of the CS genes of the AB bacterium, Rickettsia prowazekii Breinl, Rickettsia typhi Wilmington, Rickettsia canada 2678, and Rickettsia conorii 7 (Malish) were sequenced. The greatest differences among the above-listed rickettsial and AB bacterium CS gene sequences were between bp 1078 and 1110. Numerical analysis based on CS gene fragment sequences shows the close relationships of the AB bacterium to the genus Rickettsia. Expanding of knowledge about rickettsial arthropod vectors and participation of rickettsiae in the cytoplasmic maternal inheritance of arthropods is discussed.
AB - The male-killing ladybird beetle (LB) bacterium (AB bacterium) was analyzed with specific rickettsial molecular biology tools in the LB Adalia bipunctata strains. Eight phenotype-positive LB strains showing mortality of male embryos were amplified with rickettsial genus-specific primers from the gene for citrate synthase (CS) and the gene for a 17-kDa protein and spotted fever group-specific primers from the gene for the 120-kDa outer membrane protein (ompB). The specificity of amplification was confirmed by Southern hybridization and the absence of the above-listed gene products in three phenotype-negative LB strains. Restriction polymorphism patterns of three examined amplicons from the CS gene, 17-kDa-protein gene, and ompB gene were identical among the eight phenotype-positive LB strains and were unique among all known rickettsiae of the spotted fever and typhus groups. Amplified fragments of the CS genes of the AB bacterium, Rickettsia prowazekii Breinl, Rickettsia typhi Wilmington, Rickettsia canada 2678, and Rickettsia conorii 7 (Malish) were sequenced. The greatest differences among the above-listed rickettsial and AB bacterium CS gene sequences were between bp 1078 and 1110. Numerical analysis based on CS gene fragment sequences shows the close relationships of the AB bacterium to the genus Rickettsia. Expanding of knowledge about rickettsial arthropod vectors and participation of rickettsiae in the cytoplasmic maternal inheritance of arthropods is discussed.
UR - http://www.scopus.com/inward/record.url?scp=0028938210&partnerID=8YFLogxK
U2 - 10.1128/aem.61.4.1431-1437.1995
DO - 10.1128/aem.61.4.1431-1437.1995
M3 - Article
C2 - 7747963
AN - SCOPUS:0028938210
SN - 0099-2240
VL - 61
SP - 1431
EP - 1437
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 4
ER -