Abstract
Underwater target recognition is a key technology for underwater acoustic countermeasure. How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic in the field of underwater acoustic signals. In this paper, the deep learning model is applied to underwater target recognition. Improved anti-noise Power-Normalized Cepstral Coefficients (ia-PNCC) is proposed, based on PNCC applied to underwater noises. Multitaper and normalized Gammatone filter banks are applied to improve the anti-noise capacity. The method is combined with a convolutional neural network in order to recognize the underwater target. Experiment results show that the acoustic feature presented by ia-PNCC has lower noise and are well-suited to underwater target recognition using a convolutional neural network. Compared with the combination of convolutional neural network with single acoustic feature, such as MFCC (Mel-scale Frequency Cepstral Coefficients) or LPCC (Linear Prediction Cepstral Coefficients), the combination of the ia-PNCC with a convolutional neural network offers better accuracy for underwater target recognition.
Original language | English |
---|---|
Pages (from-to) | 169-181 |
Number of pages | 13 |
Journal | Computers, Materials and Continua |
Volume | 58 |
Issue number | 1 |
DOIs | |
State | Published - 2019 |
Keywords
- Convolutional neural network
- Noise processing
- Underwater target recognition