Indirect combustion technology with renewable non-edible transesterified oil feedstock

Valentin Soloiu, Jose Moncada, Tyler Naes, Martin Muiños, Spencer Harp

Research output: Contribution to book or proceedingConference articlepeer-review

Abstract

This investigation focused on the combustion and performance of an indirect injection (IDI) diesel engine powered by a non-edible biodiesel blend, Brassica Carinata. This oilseed has become an attractive non-edible feedstock for biodiesel in the United States, given potential agronomical advantages. A small bore, single cylinder IDI engine was run at 2000 rpm and 5.5 bar indicated mean effective pressure (IMEP) using ultra-low sulfur diesel #2 (ULSD#2) and compared with C50, a 50% Carinata biodiesel-ULSD#2 blend (by mass). The apparent heat release for C50 reached a maximum of 22.04 J/deg which was 6.3 % lower and peaked 1.80 CAD before ULSD#2. The radiation and convection heat fluxes had similar maximum values of 0.62 MW/m2 and 1.34 MW/m2, respectively. The brake specific fuel consumption (BSFC) of C50 was 211.05 g/kWh, which was 9% higher than for ULSD#2. The mechanical efficiency was maintained relatively constant at 55% while the indicated thermal efficiency of the engine reached 59%. Both fuels produced similar nitrogen oxide (NOx) emissions with ULSD#2 and C50 producing 2.29 g/kWh and 2.23 g/kWh, respectively. The results indicate that the IDI engine can optimally work with concentrations up to 50% biodiesel.

Original languageEnglish
Title of host publicationASME 2016 Power Conference, POWER 2016, collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850213
DOIs
StatePublished - 2016
EventASME 2016 Power Conference, POWER 2016, collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology - Charlotte, United States
Duration: Jun 26 2016Jun 30 2016

Publication series

NameAmerican Society of Mechanical Engineers, Power Division (Publication) POWER
Volume2016-January

Conference

ConferenceASME 2016 Power Conference, POWER 2016, collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
Country/TerritoryUnited States
CityCharlotte
Period06/26/1606/30/16

Fingerprint

Dive into the research topics of 'Indirect combustion technology with renewable non-edible transesterified oil feedstock'. Together they form a unique fingerprint.

Cite this