TY - JOUR
T1 - Induced superfluidity of imbalanced Fermi gases near unitarity
AU - Patton, Kelly R.
AU - Sheehy, Daniel E.
PY - 2012/6/29
Y1 - 2012/6/29
N2 - The induced intraspecies interactions among the majority species, mediated by the minority species, is computed for a population-imbalanced two-component Fermi gas. Although the Feshbach-resonance mediated interspecies interaction is dominant for equal populations, leading to singlet s-wave pairing, we find that, in the strongly imbalanced regime, the induced intraspecies interaction leads to p-wave pairing and superfluidity of the majority species. Thus, we predict that the observed spin-polaron Fermi-liquid state in this regime is unstable to p-wave superfluidity, in accordance with the results of Kohn and Luttinger, below a temperature that, near unitarity, we find to be within current experimental capabilities. We present possible experimental signatures of the p-wave state using radiofrequency spectroscopy as well as density-density correlations after free expansion.
AB - The induced intraspecies interactions among the majority species, mediated by the minority species, is computed for a population-imbalanced two-component Fermi gas. Although the Feshbach-resonance mediated interspecies interaction is dominant for equal populations, leading to singlet s-wave pairing, we find that, in the strongly imbalanced regime, the induced intraspecies interaction leads to p-wave pairing and superfluidity of the majority species. Thus, we predict that the observed spin-polaron Fermi-liquid state in this regime is unstable to p-wave superfluidity, in accordance with the results of Kohn and Luttinger, below a temperature that, near unitarity, we find to be within current experimental capabilities. We present possible experimental signatures of the p-wave state using radiofrequency spectroscopy as well as density-density correlations after free expansion.
UR - http://www.scopus.com/inward/record.url?scp=84863227333&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.85.063625
DO - 10.1103/PhysRevA.85.063625
M3 - Article
AN - SCOPUS:84863227333
SN - 1050-2947
VL - 85
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 6
M1 - 063625
ER -