Influence of Defects on Mechanical Properties of Ti-6Al-4V Components Produced by Selective Laser Melting and Electron Beam Melting

Haijun Gong, Khalid Rafi, Hengfeng Gu, Janaki Ram, Thomas Starr, Brent Stucker

Research output: Contribution to journalArticlepeer-review

722 Scopus citations

Abstract

This study evaluates the mechanical properties of Ti-6Al-4 V samples produced by selective laser melting (SLM) and electron beam melting (EBM). Different combinations of process parameters with varying energy density levels were utilized to produce samples, which were analyzed for defects and subjected to hardness, tensile, and fatigue tests. In SLM samples, small pores in amounts up to 1 vol.% resulting from an increase in energy density beyond the optimum level were found to have no major detrimental effect on the mechanical properties. However, further increase in the energy density increased the amount of porosity to 5 vol.%, leading to considerable drop in tensile properties. Samples produced using lower-than-optimum energy density exhibited unmelted powder defects, which, even at 1 vol.% level, strongly affected both tensile and fatigue properties. In EBM, insufficient energy input was found to result in large, macroscopic voids, causing serious degradation in all mechanical properties. These findings are helpful in process optimization and standardization of SLM and EBM processes.

Original languageAmerican English
JournalMaterials & Design
Volume86
DOIs
StatePublished - Dec 5 2015

Keywords

  • Additive manufacturing
  • Defects
  • Electron beam melting
  • Mechanical properties
  • Selective laser melting
  • Ti–6Al–4 V

DC Disciplines

  • Engineering

Fingerprint

Dive into the research topics of 'Influence of Defects on Mechanical Properties of Ti-6Al-4V Components Produced by Selective Laser Melting and Electron Beam Melting'. Together they form a unique fingerprint.

Cite this