Insights into the Relationship between the Microstructure and the Catalytic Behavior of Fe2(MoO4)3 during the Ethanolysis of Naomaohu Coal

Ting Liu, Xuesong Sun, Yakun Tang, Yue Zhang, Jingmei Liu, Xiaodong Zhou, Xiaohui Li, Lang Liu

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Ethanolysis is an effective method to depolymerize weak bonds in lignite under mild conditions, which can result in the production of high-value-added chemicals. However, improving ethanolysis yield and regulating its resulting product distribution is a big challenge. Hence, exploiting highly active catalysts is vital. In this work, Fe2(MoO4)3 catalysts with zero-dimensional nanoparticles, one-dimensional (1D) nanorods, two-dimensional (2D) nanosheets, and three-dimensional (3D) nanoflower structures were successfully prepared and applied in the ethanolysis of Naomaohu coal. The results showed that for all samples, the yield of ethanol-soluble portions (ESP) was significantly improved. The highest yield was obtained for the Fe2(MoO4)3 nanorods, with an increase from 28.84% to 47.68%, and could be attributed to the fact that the Fe2(MoO4)3 nanorods had a higher number of exposed active (100) facets. In addition, the amounts of oxygen-containing compounds, such as ethers, esters, and phenols, increased significantly. The mechanism of ethanolysis catalyzed by the Fe2(MoO4)3 nanorods was also studied using phenylbenzyl ether (BOB) as a model compound. BOB was completely converted at 260 °C after 2 h. It is suggested that Fe2(MoO4)3 nanorods can effectively break the C-O bonds of coal macromolecules, thus promoting the conversion of coal.

Original languageEnglish
Article number6595
JournalMolecules
Volume28
Issue number18
DOIs
StatePublished - Sep 2023
Externally publishedYes

Scopus Subject Areas

  • Analytical Chemistry
  • Chemistry (miscellaneous)
  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Keywords

  • catalytic ethanolysis
  • Fe(MoO)
  • microstructure
  • oxygen-containing compounds

Fingerprint

Dive into the research topics of 'Insights into the Relationship between the Microstructure and the Catalytic Behavior of Fe2(MoO4)3 during the Ethanolysis of Naomaohu Coal'. Together they form a unique fingerprint.

Cite this