TY - GEN
T1 - Investigation of rcci characteristics of combustion and emissions with PFI of N-butanol and direct injection of high linoleic content biodiesel
AU - Soloiu, Valentin
AU - Naes, Tyler
AU - Muiños, Martin
AU - Rivero-Castillo, Alejandro
AU - Harp, Spencer
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - This study investigated the RCCI (Reactivity Controlled Compression Ignition) of PFI (Port Fuel Injection) of n-butanol with direct injection (DI) of a high linoleic acid content biodiesel, cottonseed (CS100). The experimental omnivorousfuel engine was operated at 1400 rpm and 6 bar indicated mean effective pressure (IMEP) with 20% cooled EGR. The mass ratio of n-butanol injected comprised of 50% of the total fuel mass. The dual fueling strategy of RCCI changed the conventional diesel combustion (CDC) apparent heat release profile. With the new fueling strategy the heat release was split into two regions of high temperature heat release when using CS100. The first occurred before top dead center (BTDC) from the high reactivity fuel and the second peak occurred due to the combustion of the low reactivity fuel (n-butanol) after top dead center (ATDC). ULSD did not produce this same split in heat release due to the longer ignition delay. The ignition delay for CS100 was shortened by 0.15 ms when compared to ULSD because of the high palmitic acid content in the biodiesel. The RCCI process itself extended the ignition delay about 0.17 ms (about 1.4 CAD) suggesting the possibility of controlling combustion phasing for both RCCI fueling strategies of ULSD and CS100. The CA50 occurred similarly at 10° ATDC for ULSD and CS100 however, RCCI shifted the CA50's (7° and 8° ATDC for CS100 and ULSD respectively). Soot emissions exhibited a decrease with the PFI of n-butanol because of the highly oxygenated nature of the fuel by 80%. In summary, RCCI stratification using n-Butanol as the low reactivity fuel significantly reduced soot emissions when using either a high linoleic acid content biofuel or ULSD while also suggesting control over combustion phasing.
AB - This study investigated the RCCI (Reactivity Controlled Compression Ignition) of PFI (Port Fuel Injection) of n-butanol with direct injection (DI) of a high linoleic acid content biodiesel, cottonseed (CS100). The experimental omnivorousfuel engine was operated at 1400 rpm and 6 bar indicated mean effective pressure (IMEP) with 20% cooled EGR. The mass ratio of n-butanol injected comprised of 50% of the total fuel mass. The dual fueling strategy of RCCI changed the conventional diesel combustion (CDC) apparent heat release profile. With the new fueling strategy the heat release was split into two regions of high temperature heat release when using CS100. The first occurred before top dead center (BTDC) from the high reactivity fuel and the second peak occurred due to the combustion of the low reactivity fuel (n-butanol) after top dead center (ATDC). ULSD did not produce this same split in heat release due to the longer ignition delay. The ignition delay for CS100 was shortened by 0.15 ms when compared to ULSD because of the high palmitic acid content in the biodiesel. The RCCI process itself extended the ignition delay about 0.17 ms (about 1.4 CAD) suggesting the possibility of controlling combustion phasing for both RCCI fueling strategies of ULSD and CS100. The CA50 occurred similarly at 10° ATDC for ULSD and CS100 however, RCCI shifted the CA50's (7° and 8° ATDC for CS100 and ULSD respectively). Soot emissions exhibited a decrease with the PFI of n-butanol because of the highly oxygenated nature of the fuel by 80%. In summary, RCCI stratification using n-Butanol as the low reactivity fuel significantly reduced soot emissions when using either a high linoleic acid content biofuel or ULSD while also suggesting control over combustion phasing.
UR - http://www.scopus.com/inward/record.url?scp=85012034957&partnerID=8YFLogxK
U2 - 10.1115/ICEF20169394
DO - 10.1115/ICEF20169394
M3 - Conference article
AN - SCOPUS:85012034957
T3 - ASME 2016 Internal Combustion Engine Fall Technical Conference, ICEF 2016
BT - ASME 2016 Internal Combustion Engine Fall Technical Conference, ICEF 2016
PB - American Society of Mechanical Engineers
T2 - ASME 2016 Internal Combustion Engine Fall Technical Conference, ICEF 2016
Y2 - 9 October 2016 through 12 October 2016
ER -