TY - JOUR
T1 - Investigation of the Effect of Atmospheric Plasma Treatment in Nanofiber and Nanocomposite Membranes for Piezoelectric Applications
AU - Sultana, Papia
AU - Khan, Mujibur
AU - Mandal, Debdyuti
AU - Saadatzi, Mohammadsadegh
AU - Banerjee, Sourav
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/2
Y1 - 2023/2
N2 - In this work, we report the effect of steady-state atmospheric plasma (Corona discharge) in nanofibers and nanocomposite membranes for piezoelectric applications. The investigation was performed in PVDF (Poly vinylidene fluoride) nanofibers, CNT (Carbon Nanotubes)-reinforced PVDF nanocomposites, and PAN (Poly acrylonitrile) nanofiber membranes. Steady-state plasma was generated with a high voltage power source with 1 mA discharge current output and 6 kV discharge voltage, and the gap between tip and the material was maintained to be 1 cm. For the fabrication of nanofibers and nanocomposite membranes, an electrospinning method was used. The electrospinning parameters, such as flow rate and voltage, were optimally tuned for obtaining uniform nanofibers and nanomembranes. Along with the plasma treatment, heat treatment above the glass transition temperature was also conducted on the nanofiber membranes. Using a Scanning Electron Microscope (SEM), the morphology of the nanofibers was observed. X-ray Diffraction (XRD) demonstrated the polycrystallinity of the nanofibers. Fourier Transform Infrared Spectroscopy (FTIR) analysis of the PVDF nanofibers shows a peak at 796 cm−1 representing α-phase (C-H rocking) in the control sample which is absent in the treated samples. Raman spectroscopy of PVDF nanofibers identifies a Raman shift from 873 cm−1 to 877 cm−1 (denoting β-phase) for plasma-treated samples only. Electron Paramagnetic Resonance (EPR) concludes that the intensity of the free radicals increases from 1.37 to 1.46 (a.u.) after plasma treatment. Then, sensors were fabricated from the PVDF nanofibers, MWCNT-reinforced PVDF nanofibers, and PAN nanofibers to characterize their piezoelectric properties. The impact test results showed that the atmospheric plasma and heat-treated samples had 86%, 277%, and 92% increases of the d33 value (piezoelectric coefficient) in the case of PVDF nanofibers, MWCNT-reinforced nanofibers, and PAN nanofibers, respectively. It was also observed that the capacitance of the nanofiber membranes has increased due to the plasma treatment.
AB - In this work, we report the effect of steady-state atmospheric plasma (Corona discharge) in nanofibers and nanocomposite membranes for piezoelectric applications. The investigation was performed in PVDF (Poly vinylidene fluoride) nanofibers, CNT (Carbon Nanotubes)-reinforced PVDF nanocomposites, and PAN (Poly acrylonitrile) nanofiber membranes. Steady-state plasma was generated with a high voltage power source with 1 mA discharge current output and 6 kV discharge voltage, and the gap between tip and the material was maintained to be 1 cm. For the fabrication of nanofibers and nanocomposite membranes, an electrospinning method was used. The electrospinning parameters, such as flow rate and voltage, were optimally tuned for obtaining uniform nanofibers and nanomembranes. Along with the plasma treatment, heat treatment above the glass transition temperature was also conducted on the nanofiber membranes. Using a Scanning Electron Microscope (SEM), the morphology of the nanofibers was observed. X-ray Diffraction (XRD) demonstrated the polycrystallinity of the nanofibers. Fourier Transform Infrared Spectroscopy (FTIR) analysis of the PVDF nanofibers shows a peak at 796 cm−1 representing α-phase (C-H rocking) in the control sample which is absent in the treated samples. Raman spectroscopy of PVDF nanofibers identifies a Raman shift from 873 cm−1 to 877 cm−1 (denoting β-phase) for plasma-treated samples only. Electron Paramagnetic Resonance (EPR) concludes that the intensity of the free radicals increases from 1.37 to 1.46 (a.u.) after plasma treatment. Then, sensors were fabricated from the PVDF nanofibers, MWCNT-reinforced PVDF nanofibers, and PAN nanofibers to characterize their piezoelectric properties. The impact test results showed that the atmospheric plasma and heat-treated samples had 86%, 277%, and 92% increases of the d33 value (piezoelectric coefficient) in the case of PVDF nanofibers, MWCNT-reinforced nanofibers, and PAN nanofibers, respectively. It was also observed that the capacitance of the nanofiber membranes has increased due to the plasma treatment.
KW - atmospheric plasma
KW - membrane
KW - nanocomposite
KW - nanofiber
KW - piezoelectricity
UR - http://www.scopus.com/inward/record.url?scp=85149140351&partnerID=8YFLogxK
U2 - 10.3390/membranes13020231
DO - 10.3390/membranes13020231
M3 - Article
AN - SCOPUS:85149140351
SN - 2077-0375
VL - 13
JO - Membranes
JF - Membranes
IS - 2
M1 - 231
ER -