Investigation of wave trapping and attenuation phenomenon for a high symmetry interlocking micro-structure composite metamaterial

Hossain Ahmed, Mustahseen Mobashwer Indaleeb, Mohammadsadegh Saadatzi, Trisha Sain, Susanta Ghosh, Sourav Banerjee

Research output: Contribution to book or proceedingConference articlepeer-review

1 Scopus citations

Abstract

Extracting improved mechanical properties such as high stiffness-high damping and high strength-high toughness are being investigated recently using high symmetry interlocking micro-structures. On the other hand, development of artificially engineered composite metamaterials has significantly widen the usability of such materials in multiple acoustic applications. However, investigation of elastic wave propagation through high symmetry micro-structures is still in trivial stage. In this work, a novel interlocking micro-architecture design which has been reported previously for the extraction of improved mechanical properties has been investigated to explore its acoustic responses. The finite element simulations are performed under dynamic wave propagation load at multiple scales of the geometry and for a range of material properties in frequency domain. The proposed composite structure has shown high symmetry which is uncommon in fiber-reinforced polymer composites and a desirable feature for isotropic behavior. The existence of multiple acoustic features such as band gap and near-isotropic behavior have been established. An exotic wave propagation feature, wave trapping and attenuation, has shown energy encapsulation in a series of repeating structures in a frequency range of 0.5 kHz to 2 kHz.

Original languageEnglish
Title of host publicationSmart Structures and NDE for Energy Systems and Industry 4.0
EditorsNorbert G. Meyendorf, Kerrie Gath, Christopher Niezrecki
PublisherSPIE
ISBN (Electronic)9781510626010
DOIs
StatePublished - 2019
EventSmart Structures and NDE for Energy Systems and Industry 4.0 2019 - Denver, United States
Duration: Mar 4 2019Mar 5 2019

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10973
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceSmart Structures and NDE for Energy Systems and Industry 4.0 2019
Country/TerritoryUnited States
CityDenver
Period03/4/1903/5/19

Fingerprint

Dive into the research topics of 'Investigation of wave trapping and attenuation phenomenon for a high symmetry interlocking micro-structure composite metamaterial'. Together they form a unique fingerprint.

Cite this