TY - JOUR
T1 - Itaconic Anhydride as a Green Compatibilizer in Composites Prepared by the Reinforcement of a Tung Oil-Based Thermosetting Resin with Miscanthus, Pine Wood, or Algae Biomass
AU - Conti Silva, Julio Antonio
AU - Walton, Hannah
AU - Dever, Seth
AU - Kardel, Kamran
AU - Martins Lacerda, Talita
AU - Lopes Quirino, Rafael
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2023/1
Y1 - 2023/1
N2 - Unsaturated vegetable oils with conjugated carbon–carbon double bonds, such as tung oil, can undergo free-radical polymerization, originating alternatives to petroleum-based materials. The introduction of fillers to vegetable oil-based polymer matrices results in composites with improved mechanical properties. In this work, thermosets were synthesized by the free-radical polymerization of a mixture of tung oil, divinylbenzene, and n-butyl methacrylate, and reinforced with bio-based fillers, namely Miscanthus, Pinus taeda (also known as southern pine), and algae (Microspora and Oedogonium) biomass. The effect of filler particle size on the composites’ properties was evaluated. Additionally, to develop a better interaction between the hydrophobic resin and the hydrophilic reinforcements, and improve the mechanical properties of the composites prepared, itaconic anhydride, a bio-based molecule derived from itaconic acid, was added to the resin. Thermogravimetric analysis (TGA) showed that the presence of itaconic anhydride improved the overall thermal stability of the composites. The storage modulus of the composites at room temperature, assessed by dynamic mechanical analysis (DMA), was increased by approximately 32% and 68%, for Miscanthus and southern pine composites, respectively, when itaconic acid was added to the resin. It was also observed that the glass transition temperatures were not significantly affected by the presence of itaconic acid. Scanning electron microscope (SEM) images indicated better matrix-reinforcement adhesion in the presence of itaconic anhydride.
AB - Unsaturated vegetable oils with conjugated carbon–carbon double bonds, such as tung oil, can undergo free-radical polymerization, originating alternatives to petroleum-based materials. The introduction of fillers to vegetable oil-based polymer matrices results in composites with improved mechanical properties. In this work, thermosets were synthesized by the free-radical polymerization of a mixture of tung oil, divinylbenzene, and n-butyl methacrylate, and reinforced with bio-based fillers, namely Miscanthus, Pinus taeda (also known as southern pine), and algae (Microspora and Oedogonium) biomass. The effect of filler particle size on the composites’ properties was evaluated. Additionally, to develop a better interaction between the hydrophobic resin and the hydrophilic reinforcements, and improve the mechanical properties of the composites prepared, itaconic anhydride, a bio-based molecule derived from itaconic acid, was added to the resin. Thermogravimetric analysis (TGA) showed that the presence of itaconic anhydride improved the overall thermal stability of the composites. The storage modulus of the composites at room temperature, assessed by dynamic mechanical analysis (DMA), was increased by approximately 32% and 68%, for Miscanthus and southern pine composites, respectively, when itaconic acid was added to the resin. It was also observed that the glass transition temperatures were not significantly affected by the presence of itaconic acid. Scanning electron microscope (SEM) images indicated better matrix-reinforcement adhesion in the presence of itaconic anhydride.
KW - algal biomass
KW - biocomposites
KW - itaconic anhydride
KW - lignocellulosic biomass
KW - tung oil
UR - http://www.scopus.com/inward/record.url?scp=85146810566&partnerID=8YFLogxK
U2 - 10.3390/coatings13010025
DO - 10.3390/coatings13010025
M3 - Article
AN - SCOPUS:85146810566
SN - 2079-6412
VL - 13
JO - Coatings
JF - Coatings
IS - 1
M1 - 25
ER -