Abstract
<p> In the literature, there are two different versions of Hard Lefschetz theorems for a compact Sasakian manifold. The first version, due to Kacimi-Alaoui, asserts that the basic cohomology groups of a compact Sasakian manifold satisfies the transverse Lefschetz property. The second version, established far more recently by Cappelletti-Montano, De Nicola, and Yudin, holds for the De Rham cohomology groups of a compact Sasakian manifold. In the current paper, using the formalism of odd dimensional symplectic geometry, we prove a Hard Lefschetz theorem for compact K-contact manifolds, which implies immediately that the two existing versions of Hard Lefschetz theorems are mathematically equivalent to each other.</p><p> Our method sheds new light on the Hard Lefschetz property of a Sasakian manifold. It enables us to give a simple construction of simply-connected K-contact manifolds without any Sasakian structures in any dimension ≥ 9, and answer an open question asked by Boyer and late Galicki concerning the existence of such examples.</p>
Original language | American English |
---|---|
Journal | arXiv Repository |
State | Published - Sep 2 2016 |
Keywords
- Hard Lefschetz theorems
- Lefschetz property
- Mathematics
- Sasakian manifold
DC Disciplines
- Education
- Mathematics