Abstract
The strong interest in ceramic matrix composite for high temperature application arises primarily from their ability to retain good creep behavior. The objective of this work is to investigate the creep behavior of quasi-isotropic woven silicon carbide fabric reinforced silicon-nitrogen-carbon (SiC/SiNC) ceramic composite at stress levels which are above and below the monotonie proportional limit strength. Constant-load tensile creep-rupture tests were performed on SiC/SiNC ceramic matrix composite on an Instron 8502 material test system. The creep behavior of SiC/SiNC matrix composites were investigated at various temperatures (700°C and 1000°C) and stress levels (55%, 65% of ultimate strength, σult). The strain vs. time curves consisted of primary and secondary (steady state) creep regions were established. The stress exponent and activation energy of SiC/SiNC ceramic matrix composite were also determined at these temperatures. The creep data followed the traditional power law exhibiting an exponential relationship between creep rate and stress.
Original language | English |
---|---|
Article number | IMECE2004-60936 |
Pages (from-to) | 17-30 |
Number of pages | 14 |
Journal | American Society of Mechanical Engineers, Materials Division (Publication) MD |
Volume | 99 |
DOIs | |
State | Published - 2004 |
Event | 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE - Anaheim, CA, United States Duration: Nov 13 2004 → Nov 19 2004 |
Keywords
- Ceramic Matrix Composite (CMC)
- Creep