Abstract
<div class="line" id="line-5"> In light of two measure estimate inequalities from [4] for the iterated Hardy-Littlewood maximal operator <i class="EmphasisTypeItalic"> M </i> k f, certain equivalence between <i class="EmphasisTypeItalic"> M </i> k f and the Zygmund class <i class="EmphasisTypeItalic"> L </i> Log <i class="EmphasisTypeItalic"> a </i> <i class="EmphasisTypeItalic"> L </i> are established on <span class="InlineEquation" id="IE2"> <span class="MathJax" data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="double-struck">R</mi></mrow><mi>n</mi></msup></math>' id="MathJax-Element-2-Frame" role="presentation" tabindex="0"> <span class="math" id="MathJax-Span-8"> <span style="font-size: 111%;"> <span class="mrow" id="MathJax-Span-9"> <span class="msubsup" id="MathJax-Span-10"> <span class="texatom" id="MathJax-Span-11"> <span class="mrow" id="MathJax-Span-12"> <span class="mi" id="MathJax-Span-13" style="font-family: MathJax_AMS;"> R </span> </span> </span> <span class="mi" id="MathJax-Span-14" style="font-size: 70.7%; font-family: MathJax_Math;"> n </span> </span> </span> </span> </span> </span> </span> , so that we generalize Stein's <i class="EmphasisTypeItalic"> L </i> Log <i class="EmphasisTypeItalic"> L </i> theorem. In Section 3, a simple induction enables us to prove such extensions on <i class="EmphasisTypeItalic"> K </i> <span style="font-size: 70.7%; font-family: MathJax_Math;"> n </span> , the n-dimensional linear space over a local field <i class="EmphasisTypeItalic"> K </i> , without recoursing to Leckband's result.</div>
Original language | American English |
---|---|
Journal | Approximation Theory and its Applications |
Volume | 14 |
DOIs | |
State | Published - Sep 1998 |
Disciplines
- Mathematics
Keywords
- Hardy space
- Induction hypothesis
- Iterate operator
- Local field
- Weak type