Abstract
This work presents the spectroscopic properties of trivalent samarium ions in a melt-quenched aluminophosphate glass containing silver and tin. Addition of 4 mol% of each Ag2O and SnO into the glass system with 2 mol% Sm2O3 results in Sm3+ ions luminescence under non-resonant UV excitation owing to energy transfer from single silver ions and/or twofold-coordinated Sn centers. Assessment of luminescence spectra and decay dynamics suggest the energy transfer mechanism to be essentially of the resonant radiative type. Moreover, a connection between the luminescent and structural properties of the rare-earth doped glass system was demonstrated. Raman spectroscopy characterization revealed that no significant variation in the glass matrix is induced by Sm3+ doping at the concentration employed. A comparison was made with a structural study performed on the Eu 3+ doped system (containing 2 mol% Eu2O3 along with 4 mol% of each Ag2O and SnO) where the radiative energy transfer mechanism was previously established. The data appears consistent regarding the lack of variation in glass structure upon the Eu3+ and Sm 3+ doping in connection with the dominance of the radiative transfer in the matrix. Thermal treatment of the material leads to precipitation of Ag nanoparticles of a broad size range inside the dielectric as observed by transmission electron microspcopy. Assessment of 4G5/2 excited state decay in Sm3+ ions shows no influence from the silver particles.
Original language | English |
---|---|
Pages (from-to) | 1215-1220 |
Number of pages | 6 |
Journal | Optical Materials |
Volume | 33 |
Issue number | 8 |
DOIs | |
State | Published - Jun 2011 |
Keywords
- Nanoparticles
- Non-crystalline solids
- Optical absorption
- Photoluminescence