Machine fault detection using neuro- fuzzy inference system and enetic agorithms

Research output: Contribution to book or proceedingConference articlepeer-review

4 Scopus citations

Abstract

A study is presented to show the performance of machine fault detection using adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithms (GAs), termed here as GA-ANFIS. The time domain vibration signals of a rotating machine with normal and defective gears are processed for feature extraction. The extracted features from original and preprocessed signals are used as inputs to GA-ANFIS for two class (normal or fault) recognition. The number and the parameters of membership functions used in ANFIS along with the features are selected using GAs maximizing the classification success. The results of fault detection are compared with GA based artificial neural network (ANN), termed here as GA-ANN. In GA-ANN, the number of hidden nodes and the selection of input features are optimized using GAs. For each trial, the GA-ANFIS and GA-ANN are trained with a subset of the experimental data for known machine conditions. The trained GA-ANFIS and GA-ANN are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a gearbox. The results compare the effectiveness of both types of classifiers (ANFIS and ANN) with GA based selection of features and classifier parameters.

Original languageEnglish
Title of host publicationProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences - DETC2005
Subtitle of host publication25th Computers and Information in Engineering Conf.
Pages1031-1039
Number of pages9
StatePublished - 2005
EventDETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Long Beach, CA, United States
Duration: Sep 24 2005Sep 28 2005

Publication series

NameProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005
Volume3 B

Conference

ConferenceDETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Country/TerritoryUnited States
CityLong Beach, CA
Period09/24/0509/28/05

Fingerprint

Dive into the research topics of 'Machine fault detection using neuro- fuzzy inference system and enetic agorithms'. Together they form a unique fingerprint.

Cite this