Abstract
We introduce a squarefree monomial ideal associated to the set of domino tilings of a 2 × n rectangle and proceed to study the associated minimal free resolution. In this paper, we use results of Dalili and Kummini to show that the Betti numbers of the ideal are independent of the underlying characteristic of the field, and apply a natural splitting to explicitly determine the projective dimension and Castelnuovo-Mumford regularity of the ideal.
Original language | English |
---|---|
Article number | 1950118 |
Journal | Journal of Algebra and its Applications |
Volume | 18 |
Issue number | 6 |
DOIs | |
State | Published - Jun 1 2019 |
Scopus Subject Areas
- Algebra and Number Theory
- Applied Mathematics
Keywords
- Betti numbers
- domino tiling
- squarefree monomial ideals