TY - JOUR
T1 - Modeling a Role of Field of View in the Extraction of Geometric Cues During Reorientation
AU - Sturz, Bradley R.
PY - 2014/6/3
Y1 - 2014/6/3
N2 - Recently, Sturz et al. (2013) provided evidence for a role of field of view (FOV, i.e., amount of the environment visible from a single vantage point) in the reorientation process. Specifically, they found that constraining FOV (i.e., FOV of 50° compared to FOV of 100°) appeared to prevent the extraction of geometric cues. Given this evidence, I attempted to model a role of FOV in the extraction of geometric cues during reorientation. The development of such a model appeared ideal for at least two reasons. First, global geometric cues (e.g., the principal axis of space) must be, by definition, extracted from the entire environment (i.e., 100% of the environment). As a result, I assumed that 100% of the environment was the threshold for extracting global geometric cues. It follows that an inability to have available (either via current view or in memory) the entire environment would necessarily prohibit extraction of global geometric cues. However, I explicitly acknowledge that an empirical threshold for the extraction of global geometric cues is unknown. Second, recent theoretical and empirical efforts have urged for the consideration of the participant's perspective during reorientation—that is, what information is available to the perceiver (e.g., Sturz and Bodily, 2011; Wystrach and Graham, 2012). Should a model be capable of demonstrating that differences in FOV produce differences in the total amount of the environment available, it would provide additional theoretical support for a role of the participant's perspective during reorientation while also providing additional support for a role of FOV in the reorientation process. In other words, it would provide a theoretical demonstration that differences in the amount of the environment available from a single vantage point are able to produce difference in the total amount of the environment that is available to the perceiver, and by extension, delineate FOVs that would not only allow but also prohibit the extraction of global geometric cues during reorientation ...
AB - Recently, Sturz et al. (2013) provided evidence for a role of field of view (FOV, i.e., amount of the environment visible from a single vantage point) in the reorientation process. Specifically, they found that constraining FOV (i.e., FOV of 50° compared to FOV of 100°) appeared to prevent the extraction of geometric cues. Given this evidence, I attempted to model a role of FOV in the extraction of geometric cues during reorientation. The development of such a model appeared ideal for at least two reasons. First, global geometric cues (e.g., the principal axis of space) must be, by definition, extracted from the entire environment (i.e., 100% of the environment). As a result, I assumed that 100% of the environment was the threshold for extracting global geometric cues. It follows that an inability to have available (either via current view or in memory) the entire environment would necessarily prohibit extraction of global geometric cues. However, I explicitly acknowledge that an empirical threshold for the extraction of global geometric cues is unknown. Second, recent theoretical and empirical efforts have urged for the consideration of the participant's perspective during reorientation—that is, what information is available to the perceiver (e.g., Sturz and Bodily, 2011; Wystrach and Graham, 2012). Should a model be capable of demonstrating that differences in FOV produce differences in the total amount of the environment available, it would provide additional theoretical support for a role of the participant's perspective during reorientation while also providing additional support for a role of FOV in the reorientation process. In other words, it would provide a theoretical demonstration that differences in the amount of the environment available from a single vantage point are able to produce difference in the total amount of the environment that is available to the perceiver, and by extension, delineate FOVs that would not only allow but also prohibit the extraction of global geometric cues during reorientation ...
KW - Field of view
KW - Geometric cues
KW - Geometry
KW - Orientation
KW - Theoretical model
UR - https://digitalcommons.georgiasouthern.edu/psych-facpubs/79
UR - https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=1082&context=psych-facpubs
U2 - 10.3389/fpsyg.2014.00535
DO - 10.3389/fpsyg.2014.00535
M3 - Article
SN - 1664-1078
VL - 5
JO - Frontiers in Psychology
JF - Frontiers in Psychology
ER -