TY - GEN
T1 - Modeling of the electrical resistance of TCP muscle
AU - Wu, Lianjun
AU - Tadesse, Yonas
N1 - Publisher Copyright:
© 2017 ASME.
PY - 2017
Y1 - 2017
N2 - A recently emerged artificial muscle that is created by transforming a sewing thread or fishing line through a process of twisting, coiling and annealing has a great potential application in sensing, actuation or energy harvesting. Extensive experimental investigations along with modeling have been carried out to further understand the twisted and coiled polymer (TCP) muscle. The TCP muscle has a large actuation stroke and long life cycle, and is easy to produce with low cost. Incorporation of TCP muscles into sensor application will advance the combined muscle-sensor integrated system development. We explored the strain sensing principle of TCP muscle based on its change in electrical resistance during actuation. In this paper, we present a geometrical model to describe the principle based on the relationship between the electrical resistivity, temperature and length. Moreover, a series of experiments were carried out to correlate the time domain input and output relationships as well as to verify the model.
AB - A recently emerged artificial muscle that is created by transforming a sewing thread or fishing line through a process of twisting, coiling and annealing has a great potential application in sensing, actuation or energy harvesting. Extensive experimental investigations along with modeling have been carried out to further understand the twisted and coiled polymer (TCP) muscle. The TCP muscle has a large actuation stroke and long life cycle, and is easy to produce with low cost. Incorporation of TCP muscles into sensor application will advance the combined muscle-sensor integrated system development. We explored the strain sensing principle of TCP muscle based on its change in electrical resistance during actuation. In this paper, we present a geometrical model to describe the principle based on the relationship between the electrical resistivity, temperature and length. Moreover, a series of experiments were carried out to correlate the time domain input and output relationships as well as to verify the model.
UR - http://www.scopus.com/inward/record.url?scp=85034999941&partnerID=8YFLogxK
U2 - 10.1115/IMECE201772065
DO - 10.1115/IMECE201772065
M3 - Conference article
AN - SCOPUS:85034999941
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Dynamics, Vibration, and Control
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
Y2 - 3 November 2017 through 9 November 2017
ER -