Multi-Agent Security Tax: Trading Off Security and Collaboration Capabilities in Multi-Agent Systems

Pierre Peigné, Mikolaj Kniejski, Filip Sondej, Matthieu David, Jason Hoelscher-Obermaier, Christian Schroeder de Witt, Esben Kran

Research output: Contribution to book or proceedingConference articlepeer-review

Abstract

As AI agents are increasingly adopted to collaborate on complex objectives, ensuring the security of autonomous multi-agent systems becomes crucial. We develop simulations of agents collaborating on shared objectives to study these security risks and security trade-offs. We focus on scenarios where an attacker compromises one agent, using it to steer the entire system toward misaligned outcomes by corrupting other agents. In this context, we observe infectious malicious prompts - the multi-hop spreading of malicious instructions. To mitigate this risk, we evaluated several strategies: two”vaccination” approaches that insert false memories of safely handling malicious input into the agents’ memory stream, and two versions of a generic safety instruction strategy. While these defenses reduce the spread and fulfillment of malicious instructions in our experiments, they tend to decrease collaboration capability in the agent network. Our findings illustrate potential trade-off between security and collaborative efficiency in multi-agent systems, providing insights for designing more secure yet effective AI collaborations.

Original languageEnglish
Title of host publicationSpecial Track on AI Alignment
EditorsToby Walsh, Julie Shah, Zico Kolter
PublisherAssociation for the Advancement of Artificial Intelligence
Pages27573-27581
Number of pages9
Edition26
ISBN (Electronic)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOIs
StatePublished - Apr 11 2025
Externally publishedYes
Event39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: Feb 25 2025Mar 4 2025

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
PublisherAssociation for the Advancement of Artificial Intelligence
ISSN (Print)2159-5399

Conference

Conference39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Country/TerritoryUnited States
CityPhiladelphia
Period02/25/2503/4/25

Scopus Subject Areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Multi-Agent Security Tax: Trading Off Security and Collaboration Capabilities in Multi-Agent Systems'. Together they form a unique fingerprint.

Cite this