Multiscale Models for Nano-Bio Systems

Guo-Wei Wei, Zhan Chen

Research output: Contribution to book or proceedingChapter

Abstract

We propose a differential geometry based multiscale paradigm for the description and analysis of aqueous chemical, biological systems, such as protein complex, molecular motors, ion channels, and PEM fuel cells. Our multiscale paradigm provides a macroscopic continuum description of the fluid or solvent, a microscopic discrete description of the macromolecule, a differential geometric formulation of the micro-macro interface, and a mixed micro-macro description of the electrostatic interaction. In the proposed framework, we have derived four types of governing equations for different parts of complex systems: fluid dynamics, molecular dynamics, electrostatic interactions, and surface dynamics. These four types of governing equations are generalized Navier–Stokes equations, Newton’s equations, generalized Poisson or Poisson–Boltzmann equations, and hypersurface evolution equations. For systems far from equilibrium, coupled geometric evolution equations, generalized Navier–Stokes equations, Newton’s equations, and Poisson–Nernst–Planck (PNP) equations are formulated. For excessively large chemical and biological systems, we replace the expensive molecular dynamics with a macroscopic elastic description and develop alternative differential geometry based fluid-electroelastic models.
Original languageAmerican English
Title of host publicationProceedings of CMBE: 2nd International Conference on Computational & Mathematical Biomedical Engineering
StatePublished - Mar 30 2011

Keywords

  • Differential geometry based multiscale modeling
  • Ion channels
  • Molecular dynamics
  • Proteins
  • Solvation analysis

DC Disciplines

  • Mathematics

Fingerprint

Dive into the research topics of 'Multiscale Models for Nano-Bio Systems'. Together they form a unique fingerprint.

Cite this