TY - JOUR
T1 - Nonparametric confidence intervals for ranked set samples
AU - Ghosh, Santu
AU - Chatterjee, Arpita
AU - Balakrishnan, N.
N1 - Publisher Copyright:
© 2017, Springer-Verlag GmbH Germany.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - In this work, we propose several different confidence interval methods based on ranked-set samples. First, we develop bootstrap bias-corrected and accelerated method for constructing confidence intervals based on ranked-set samples. Usually, for this method, the accelerated constant is computed by employing jackknife method. Here, we derive an analytical expression for the accelerated constant, which results in reducing the computational burden of this bias-corrected and accelerated bootstrap method. The other proposed confidence interval approaches are based on a monotone transformation along with normal approximation. We also study the asymptotic properties of the proposed methods. The performances of these methods are then compared with those of the conventional methods. Through this empirical study, it is shown that the proposed confidence intervals can be successfully applied in practice. The usefulness of the proposed methods is further illustrated by analyzing a real-life data on shrubs.
AB - In this work, we propose several different confidence interval methods based on ranked-set samples. First, we develop bootstrap bias-corrected and accelerated method for constructing confidence intervals based on ranked-set samples. Usually, for this method, the accelerated constant is computed by employing jackknife method. Here, we derive an analytical expression for the accelerated constant, which results in reducing the computational burden of this bias-corrected and accelerated bootstrap method. The other proposed confidence interval approaches are based on a monotone transformation along with normal approximation. We also study the asymptotic properties of the proposed methods. The performances of these methods are then compared with those of the conventional methods. Through this empirical study, it is shown that the proposed confidence intervals can be successfully applied in practice. The usefulness of the proposed methods is further illustrated by analyzing a real-life data on shrubs.
KW - Bias corrected and accelerated
KW - Bootstrap
KW - Edgeworth expansion
KW - Monotone transformations
UR - http://www.scopus.com/inward/record.url?scp=85021223930&partnerID=8YFLogxK
U2 - 10.1007/s00180-017-0744-0
DO - 10.1007/s00180-017-0744-0
M3 - Article
AN - SCOPUS:85021223930
SN - 0943-4062
VL - 32
SP - 1689
EP - 1725
JO - Computational Statistics
JF - Computational Statistics
IS - 4
ER -