Abstract
<div class="line" id="line-19"> Let Γn(φ) be a formula of LPA (PA = Peano Arithmetic) meaning “there is a proof of φ from PA-axioms, in which ω-rule is iterated no more than <i> n </i> times”. We examine relations over pairs of natural numbers of the kind.</div><div class="line" id="line-174"> ( <i> n </i> , <i> k </i> ) ≦H ( <i> n', k </i> ') iff PA + RFNn ( <i> H </i> k) ⊩ RFNn ( <i> H </i> k). Where <i> H </i> denotes one of the hierarchies ∑ or Π and RFNn( <i> C </i> ) is the scheme of the reflection principle for Γn restricted to formulas from the class <i> C </i> (Γn(φ) implies “φ is true”, for every φ ∈ <i> C </i> ). Our main result is that. ( <i> n </i> , <i> k </i> ) ≦ <i> H </i> ( <i> n', k </i> ') if <i> n </i> ≦ <i> n </i> ' and <i> k </i> ≦ max ( <i> k', 2n </i> ' + 1).</div>
Original language | American English |
---|---|
Journal | Mathematical Logic Quarterly |
Volume | 38 |
DOIs | |
State | Published - 1992 |
Disciplines
- Mathematics
Keywords
- ω-Rule