One-Dimensional Wave Equations Defined by Fractal Laplacians

John Fun Choi Chan, Sze Man Ngai, Alexander Teplyaev

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

We study one-dimensional wave equations defined by a class of fractal Laplacians. These Laplacians are defined by fractal measures generated by iterated function systems with overlaps, such as the well-known infinite Bernoulli convolution associated with the golden ratio and the three-fold convolution of the Cantor measure. The iterated function systems defining these measures do not satisfy the post-critically finite condition or the open set condition. Using second-order self-similar identities introduced by Strichartz et al., we discretize the equations and use the finite element and central difference methods to obtain numerical approximations of the weak solutions. We prove that the numerical solutions converge to the weak solution and obtain estimates for the rate of convergence.

Original languageAmerican English
JournalJournal d'Analyse Mathématique
Volume127
DOIs
StatePublished - Sep 1 2015

Keywords

  • Fractal Laplacians
  • Mathematics
  • One-Dimensional wave equations

DC Disciplines

  • Education
  • Mathematics

Fingerprint

Dive into the research topics of 'One-Dimensional Wave Equations Defined by Fractal Laplacians'. Together they form a unique fingerprint.

Cite this