Orthogonal Polynomials Defined by Self-Similar Measures with Overlaps

Sze Man Ngai, Wei Tang, Anh Tran, Shuai Yuan

Research output: Contribution to journalArticlepeer-review

Abstract

We study orthogonal polynomials with respect to self-similar measures, focusing on the class of infinite Bernoulli convolutions, which are defined by iterated function systems with overlaps, especially those defined by the Pisot, Garsia, and Salem numbers. By using an algorithm of Mantica, we obtain graphs of the coefficients of the 3-term recursion relation defining the orthogonal polynomials. We use these graphs to predict whether the singular infinite Bernoulli convolutions belong to the Nevai class. Based on our numerical results, we conjecture that all infinite Bernoulli convolutions with contraction ratios greater than or equal to 1/2 belong to Nevai’s class, regardless of the probability weights assigned to the self-similar measures.

Original languageEnglish
Pages (from-to)1026-1038
Number of pages13
JournalExperimental Mathematics
Volume31
Issue number3
DOIs
StatePublished - 2022

Keywords

  • Nevai class
  • Orthogonal polynomial
  • self-similar measure with overlaps

Fingerprint

Dive into the research topics of 'Orthogonal Polynomials Defined by Self-Similar Measures with Overlaps'. Together they form a unique fingerprint.

Cite this